Chemical Approach Towards Broadband Spintronics on Nanoscale Pyrene Films
Ritu Gupta
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Contribution: Formal analysis (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorJhantu Pradhan
Department of Physics, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana, India
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana, India
Contribution: Data curation (supporting)
Search for more papers by this authorArabinda Haldar
Department of Physics, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana, India
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Chandrasekhar Murapaka
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana, India
Contribution: Formal analysis (lead)
Search for more papers by this authorCorresponding Author
Prakash Chandra Mondal
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorRitu Gupta
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Contribution: Formal analysis (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorJhantu Pradhan
Department of Physics, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana, India
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana, India
Contribution: Data curation (supporting)
Search for more papers by this authorArabinda Haldar
Department of Physics, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana, India
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Chandrasekhar Murapaka
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana, India
Contribution: Formal analysis (lead)
Search for more papers by this authorCorresponding Author
Prakash Chandra Mondal
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorGraphical Abstract
An electrochemically grafted pyrene oligomer is deposited on indium tin oxide (ITO), under a varied-thickness permalloy, to study broadband spintronics. High spin-mixing conductance and linewidth broadening reveal that pyrene can be an attractive nonmagnetic element for efficient spin-pumping at room temperature, a striking alternative to conventional but expensive heavy metals.
Abstract
The injection of pure spin current into the non-magnetic layer plays a crucial role in transmitting, processing, and storing data information in the realm of spintronics. To understand broadband molecular spintronics, pyrene oligomer film (≈20 nm thickness) was prepared using an electrochemical method forming indium tin oxide (ITO) electrode/pyrene covalent interfaces. Permalloy (Ni80Fe20) films with different nanoscale thicknesses were used as top contact over ITO/pyrene layers to estimate the spin pumping efficiency across the interfaces using broadband ferromagnetic resonance spectra. The spintronic devices are composed of permalloy/pyrene/ITO orthogonal configuration, showing remarkable spin pumping from permalloy to pyrene film. The large spin pumping is evident from the linewidth broadening of 5.4 mT at 9 GHz, which is direct proof of spin angular momentum transfer across the interface. A striking observation is made with the high spin-mixing conductance of ≈1.02×1018 m−2, a value comparable to the conventional heavy metals. Large spin angular moment transfer was observed at the permalloy-pyrene interfaces, especially at the lower thickness of permalloy, indicating a strong spinterface effect. Pure spin current injection from ferromagnetic into electrochemically grown pyrene films ensures efficient broadband spin transport, which opens a new area in molecular broadband spintronics.
Conflict of interest
The authors declare no conflict of interest to this work.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202307458-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Fert, Angew. Chem. Int. Ed. 2008, 47, 5956–5967.
- 2K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu, Y. Xie, Angew. Chem. Int. Ed. 2013, 52, 10477–10481.
- 3K. S. Kumar, M. Ruben, Angew. Chem. Int. Ed. 2021, 60, 7502–7521.
- 4S. Sanvito, Chem. Soc. Rev. 2011, 40, 3336.
- 5S. P. Mathew, P. C. Mondal, H. Moshe, Y. Mastai, R. Naaman, Appl. Phys. Lett. 2014, 105, 242408.
- 6B. Dieny, R. C. Sousa, J. Hérault, C. Papusoi, G. Prenat, U. Ebels, D. Houssameddine, B. Rodmacq, S. Auffret, L. Prejbeanu-Buda, M. C. Cyrille, B. Delaet, O. Redon, C. Ducruet, J. P. Nozieres, L. Prejbeanu, Handbook Magn. Mater., Vol. 19, Elsevier, Amsterdam, 2011, pp. 107–127.
- 7D. Fan, S. Angizi, Z. He, in 2017 IEEE Comput. Soc. Annu. Symp. VLSI, IEEE, 2017, pp. 683–688.
- 8P. Barla, V. K. Joshi, S. Bhat, Spintronic Devices: A Promising Alternative to CMOS Devices, Springer US, 2021.
- 9J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey, Phys. Rev. Lett. 1995, 74, 3273–3276.
- 10P. Zhao, J. Li, H. Jin, L. Yu, B. Huang, D. Ying, Phys. Chem. Chem. Phys. 2018, 20, 10286–10291.
- 11P. Kumar, A. Kumar, D. Kaur, Ceram. Int. 2021, 47, 4587–4594.
- 12J. Hong, X. Li, N. Xu, H. Chen, S. Cabrini, S. Khizroev, J. Bokor, L. You, Adv. Intell. Syst. 2020, 2, 2000143.
- 13S. Z. Peng, Y. Zhang, M. X. Wang, Y. G. Zhang, W. Zhao, in Wiley Encycl. Electr. Electron. Eng., Wiley, Hoboken, 2014, pp. 1–16.
- 14O. Yalçın, Ferromagnetic Resonance - Theory and Applications, InTech, London, 2013.
- 15A. Hoffmann, S. D. Bader, Phys. Rev. Appl. 2015, 4, 047001.
- 16T. Meier, Ferromagnetische Resonanz (FMR), Technische Universität München, 2020.
- 17Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, Phys. Rev. Lett. 2002, 88, 117601.
- 18M. V. Costache, M. Sladkov, S. M. Watts, C. H. van der Wal, B. J. van Wees, Phys. Rev. Lett. 2006, 97, 216603.
- 19M. B. Jungfleisch, V. Lauer, R. Neb, A. V. Chumak, B. Hillebrands, Appl. Phys. Lett. 2013, 103, 022411.
- 20J.-C. Rojas-Sánchez, N. Reyren, P. Laczkowski, W. Savero, J.-P. Attané, C. Deranlot, M. Jamet, J.-M. George, L. Vila, H. Jaffrès, Phys. Rev. Lett. 2014, 112, 106602.
- 21E. Montoya, P. Omelchenko, C. Coutts, N. R. Lee-Hone, R. Hübner, D. Broun, B. Heinrich, E. Girt, Phys. Rev. B 2016, 94, 054416.
- 22Q. Lu, S. Xie, F. Qu, J. Phys. Chem. Lett. 2021, 12, 3540–3544.
- 23S. W. Jiang, S. Liu, P. Wang, Z. Z. Luan, X. D. Tao, H. F. Ding, D. Wu, Phys. Rev. Lett. 2015, 115, 086601.
- 24S. Watanabe, K. Ando, K. Kang, S. Mooser, Y. Vaynzof, H. Kurebayashi, E. Saitoh, H. Sirringhaus, Nat. Phys. 2014, 10, 308–313.
- 25B. Koopmans, Nat. Phys. 2014, 10, 249–250.
- 26M. Kimata, D. Nozaki, Y. Niimi, H. Tajima, Y. Otani, Phys. Rev. B 2015, 91, 224422.
- 27Q. Lu, S. Yin, T. Gao, W. Qin, S. Xie, F. Qu, A. Saxena, J. Phys. Chem. Lett. 2020, 11, 1087–1092.
- 28C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, A. Fert, Nat. Phys. 2010, 6, 615–620.
- 29S. Mishra, A. K. Mondal, E. Z. B. Smolinsky, R. Naaman, K. Maeda, T. Nishimura, T. Taniguchi, T. Yoshida, K. Takayama, E. Yashima, Angew. Chem. Int. Ed. 2020, 59, 14671–14676.
- 30T. S. Metzger, S. Mishra, B. P. Bloom, N. Goren, A. Neubauer, G. Shmul, J. Wei, S. Yochelis, F. Tassinari, C. Fontanesi, D. H. Waldeck, Y. Paltiel, R. Naaman, Angew. Chem. Int. Ed. 2020, 59, 1653–1658.
- 31R. Naaman, Y. Paltiel, D. H. Waldeck, Nat. Chem. Rev. 2019, 3, 250–260.
- 32G. Koplovitz, G. Leitus, S. Ghosh, B. P. Bloom, S. Yochelis, D. Rotem, F. Vischio, M. Striccoli, E. Fanizza, R. Naaman, D. H. Waldeck, D. Porath, Y. Paltiel, Small 2019, 15, 1804557.
- 33P. C. Mondal, N. Kantor-Uriel, S. P. Mathew, F. Tassinari, C. Fontanesi, R. Naaman, Adv. Mater. 2015, 27, 1924–1927.
- 34A. Maiti, A. J. Pal, Angew. Chem. Int. Ed. 2022, 61, e202214161.
- 35H. Liu, J. Wang, A. Chanana, Z. V. Vardeny, J. Appl. Phys. 2019, 125, 142908.
- 36Y. Tani, Y. Teki, E. Shikoh, Appl. Phys. Lett. 2015, 107, 242406.
- 37T. Manoj, S. Kotha, B. Paikaray, D. Srideep, A. Haldar, K. V. Rao, C. Murapaka, RSC Adv. 2021, 11, 35567–35574.
- 38R. Gupta, P. Jash, A. Pritam, P. C. Mondal, Can. J. Chem. 2022, 100, 530–537.
- 39R. Gupta, P. Jash, P. Sachan, A. Bayat, V. Singh, P. C. Mondal, Angew. Chemie Int. Ed. 2021, 60, 26904–26921.
- 40J. Pinson, F. Podvorica, Chem. Soc. Rev. 2005, 34, 429.
- 41R. Gupta, J. A. Fereiro, A. Bayat, A. Pritam, M. Zharnikov, P. C. Mondal, Nat. Chem. Rev. 2023, 7, 106–122.
- 42P. Sachan, P. C. Mondal, Analyst 2020, 145, 1563–1582.
- 43P. Chandra Mondal, U. M. Tefashe, R. L. McCreery, J. Am. Chem. Soc. 2018, 140, 7239–7247.
- 44T. M. Figueira-Duarte, K. Müllen, Chem. Rev. 2011, 111, 7260–7314.
- 45S. Ogi, K. Matsumoto, S. Yamaguchi, Angew. Chem. Int. Ed. 2018, 57, 2339–2343.
- 46T. A. Pham, F. Song, M. T. Nguyen, M. Stöhr, Chem. Commun. 2014, 50, 14089–14092.
- 47N. Amann, E. Pandurski, T. Fiebig, H. A. Wagenknecht, Angew. Chem. Int. Ed. 2002, 41, 2978–2980.
10.1002/1521-3773(20020816)41:16<2978::AID-ANIE2978>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 48R. Gupta, P. Jash, P. C. Mondal, J. Mater. Chem. C 2021, 9, 11497–11516.
- 49Q. Wu, P. Zhao, D. Liu, RSC Adv. 2016, 6, 16634–16639.
- 50R. L. McCreery, Acc. Chem. Res. 2022, 55, 2766–2779.
- 51A. Bayat, J.-C. Lacroix, R. L. McCreery, J. Am. Chem. Soc. 2016, 138, 12287–12296.
- 52I. Hnid, D. Frath, F. Lafolet, X. Sun, J.-C. Lacroix, J. Am. Chem. Soc. 2020, 142, 7732–7736.
- 53A. Piper, D. K. Corrigan, A. R. Mount, Electrochem. Sci. Adv. 2022, 2.
- 54J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103–69.
- 55J. Park, L. Belding, L. Yuan, M. P. S. Mousavi, S. E. Root, H. J. Yoon, G. M. Whitesides, J. Am. Chem. Soc. 2021, 143, 2156–2163.
- 56P. C. Mondal, C. Fontanesi, ChemPhysChem 2018, 19, 60–66.
- 57P. C. Mondal, V. Singh, M. Zharnikov, Acc. Chem. Res. 2017, 50, 2128–2138.
- 58Y. Hamo, M. Lahav, M. E. van der Boom, Angew. Chem. Int. Ed. 2020, 59, 2612–2617.
- 59P. C. Mondal, V. Singh, Y. L. Jeyachandran, M. Zharnikov, J. Phys. Chem. C 2019, 123, 6121–6129.
- 60M. R. Charlton, K. J. Suhr, B. J. Holliday, K. J. Stevenson, Langmuir 2015, 31, 695–702.
- 61C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, N. R. Armstrong, Langmuir 2002, 18, 450–457.
- 62M. M. Chehimi, Aryl Diazonium Salts: New Coupling Agents in Polymer and Surface Science, Wiley, Weinheim, 2012.
- 63S. Maldonado, T. J. Smith, R. D. Williams, S. Morin, E. Barton, K. J. Stevenson, Langmuir 2006, 22, 2884–2891.
- 64G. Roy, R. Gupta, S. Ranjan Sahoo, S. Saha, D. Asthana, P. Chandra Mondal, Coord. Chem. Rev. 2022, 473, 214816.
- 65P. Charoen-amornkitt, T. Suzuki, S. Tsushima, J. Electrochem. Soc. 2020, 167, 166506.
- 66E. Vetter, I. VonWald, S. Yang, L. Yan, S. Koohfar, D. Kumah, Z.-G. Yu, W. You, D. Sun, Phys. Rev. Mater. 2020, 4, 085603.
- 67A. Wittmann, G. Schweicher, K. Broch, J. Novak, V. Lami, D. Cornil, E. R. McNellis, O. Zadvorna, D. Venkateshvaran, K. Takimiya, Y. H. Geerts, J. Cornil, Y. Vaynzof, J. Sinova, S. Watanabe, H. Sirringhaus, Phys. Rev. Lett. 2020, 124, 027204.
- 68R. Bansal, A. Kumar, N. Chowdhury, N. Sisodia, A. Barvat, A. Dogra, P. Pal, P. K. Muduli, J. Magn. Magn. Mater. 2019, 476, 337–341.
- 69H. Nakayama, K. Ando, K. Harii, T. Yoshino, R. Takahashi, Y. Kajiwara, K. Uchida, Y. Fujikawa, E. Saitoh, Phys. Rev. B 2012, 85, 144408.
- 70A. Kumar, R. Bansal, S. Chaudhary, P. K. Muduli, Phys. Rev. B 2018, 98, 104403.
- 71N. Zheng, H. Liu, Y.-J. Zeng, Adv. Sci. 2023, 10, 2207506.