Efficient Selective Oxidation of Aromatic Alkanes by Double Cobalt Active Sites over Oxygen Vacancy-rich Mesoporous Co3O4
Yali Liu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022 China
These authors contributed equally to this work.
Search for more papers by this authorYuenan Zheng
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116081 China
These authors contributed equally to this work.
Search for more papers by this authorDanyang Feng
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Jilin, 130024 China
Search for more papers by this authorLiangliang Zhang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorLing Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorXiaowei Song
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorCorresponding Author
Prof. Zhen-An Qiao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorYali Liu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022 China
These authors contributed equally to this work.
Search for more papers by this authorYuenan Zheng
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116081 China
These authors contributed equally to this work.
Search for more papers by this authorDanyang Feng
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Jilin, 130024 China
Search for more papers by this authorLiangliang Zhang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorLing Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorXiaowei Song
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorCorresponding Author
Prof. Zhen-An Qiao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorGraphical Abstract
Oxygen vacancy-rich mesoporous Co3O4 (mCo3O4) was synthesized by a simple ligand-assisted self-assembly method. Benefitting from abundant oxygen vacancies and the mesoporous structure of mCo3O4, a unique catalytic path was presented with direct oxidation of aromatic alkanes to aromatic ketones rather than the conventional stepwise oxidation to alcohols and then to ketones.
Abstract
The development of efficient catalyst for selective oxidation of hydrocarbon to functional compounds remains a challenge. Herein, mesoporous Co3O4 (mCo3O4-350) showed excellent catalytic activity for selective oxidation of aromatic-alkanes, especially for oxidation of ethylbenzene with a conversion of 42 % and selectivity of 90 % for acetophenone at 120 °C. Notably, mCo3O4 presented a unique catalytic path of direct oxidation of aromatic-alkanes to aromatic ketones rather than the conventional stepwise oxidation to alcohols and then to ketones. Density functional theory calculations revealed that oxygen vacancies in mCo3O4 activate around Co atoms, causing electronic state change from Co3+(Oh)→Co2+(Oh). Co2+(Oh) has great attraction to ethylbenzene, and weak interaction with O2, which provide insufficient O2 for gradual oxidation of phenylethanol to acetophenone. Combined with high energy barrier for forming phenylethanol, the direct oxidation path from ethylbenzene to acetophenone is kinetically favorable on mCo3O4, sharply contrasted to non-selective oxidation of ethylbenzene on commercial Co3O4.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202306261-sup-0001-misc_information.pdf3.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329–2363.
- 2J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227–230.
- 3X. Li, J. Chen, X. Wang, J. Sun, M. Antonietti, J. Am. Chem. Soc. 2011, 133, 8074–8077.
- 4J. M. Venegas, W. P. McDermott, I. Hermans, Acc. Chem. Res. 2018, 51, 2556–2564.
- 5M. S. Chen, M. C. White, Science 2010, 327, 566–571.
- 6C. Yuan, Y. Liang, T. Hernandez, A. Berriochoa, K. Houk, D. Siegel, Nature 2013, 499, 192–196.
- 7Y. Liu, P. Zhang, J. Liu, T. Wang, Q. Huo, L. Yang, L. Sun, Z. Qiao, S. Dai, Chem. Mater. 2018, 30, 8579–8586.
- 8J. H. Kim, T. Constantin, M. Simonetti, J. Llaveria, N. Sheikh, D. Leonori, Nature 2021, 595, 677–683.
- 9C. Salazar, K. Flesch, B. Haines, P. Zhou, D. Musaev, S. Stahl, Science 2020, 370, 1454–1460.
- 10H. Chen, Z. Yang, X. Wang, F. Polo-Garzon, P. Halstenberg, T. Wang, X. Suo, S. Yang, H. Meyer, Z. Wu, S. Dai, J. Am. Chem. Soc. 2021, 143, 8521–8526.
- 11A. Peng, M. Kung, R. Brydon, M. Ross, L. Qian, L. Broadbelt, H. Kung, Sci. Adv. 2020, 6, e6637.
- 12G. Kyriakou, B. Boucher, A. Jewell, E. Lewis, T. Lawton, A. Baber, H. Tierney, M. Flytzani-Stephanopoulos, E. Sykes, Science 2012, 335, 1209–1212.
- 13F. Meemken, A. Baiker, Chem. Rev. 2017, 117, 11522–11569.
- 14G. Qi, T. Davies, A. Nasrallah, M. Sainna, A. Howe, R. Lewis, M. Quesne, C. Catlow, D. Willock, Q. He, D. Bethell, M. Howard, B. Murrer, B. Harrison, C. Kiely, X. Zhao, F. Deng, J. Xu, G. Hutchings, Nat. Catal. 2022, 5, 45–54.
- 15X. Lin, Z. Nie, L. Zhang, S. Mei, Y. Chen, B. Zhang, R. Zhu, Z. Liu, Green Chem. 2017, 19, 2164–2173.
- 16S. Yang, L. Peng, P. Huang, X. Wang, Y. Sun, C. Cao, W. Song, Angew. Chem. Int. Ed. 2016, 55, 4016–4020.
- 17M. Hu, W. Yang, H. Tan, L. Jin, L. Zhang, P. Kerns, Y. Dang, S. Dissanayake, S. Schaefer, B. Liu, Y. Zhu, S. Suib, J. He, Matter 2020, 2, 1244–1259.
- 18A. Chen, Y. Yu, R. Wang, Y. Yu, W. Zang, P. Tang, D. Ma, Nanoscale 2015, 7, 14684–14690.
- 19C. Liang, A. Zhao, X. Zhang, Z. Ma, R. Prins, Chem. Commun. 2009, 2047–2049.
- 20Y. Xia, T. Zhao, X. Zhu, Y. Zhao, H. He, C. Hung, X. Zhang, Y. Chen, X. Tang, J. Wang, W. Li, D. Zhao, Nat. Commun. 2021, 12, 2973.
- 21E. Spier, U. Neuenschwander, I. Hermans, Angew. Chem. Int. Ed. 2013, 52, 1581–1585.
- 22K. Huang, Y. Sun, Y. Zhang, X. Wang, W. Zhang, S. Feng, Adv. Mater. 2018, 30, 1801430.
- 23Y. Wang, Z. Li, P. Zhang, Y. Pan, Y. Zhang, Q. Cai, S. Silva, J. Liu, G. Zhang, X. Sun, Z. Yan, Nano Energy 2021, 87, 106147.
- 24S. Chinta, T. V. Choudhary, L. L. Daemen, J. Eckert, D. W. Goodman, Angew. Chem. Int. Ed. 2002, 41, 144–146.
10.1002/1521-3773(20020104)41:1<144::AID-ANIE144>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 25T. Kandemir, F. Girgsdies, T. Hansen, K. Liss, I. Kasatkin, E. Kunkes, G. Wowsnick, N. Jacobsen, R. Schlögl, M. Behrens, Angew. Chem. Int. Ed. 2013, 52, 5166–5170.
- 26M. Hartl, R. C. Gillis, L. Daemen, D. P. Olds, K. Page, S. Carlson, Y. Cheng, T. Hugle, E. B. Iverson, A. J. Ramirez-Cuesta, Y. Lee, G. Muhrer, Phys. Chem. Chem. Phys. 2016, 18, 17281–17293.
- 27H. Chen, L. Lin, Y. Li, R. Wang, Z. Gong, Y. Cui, Y. Li, Y. Liu, X. Zhao, W. Huang, Q. Fu, F. Yang, X. Bao, ACS Catal. 2019, 9, 1373–1382.
- 28Y. Zhou, C. Dong, L. Han, J. Yang, X. Du, ACS Catal. 2016, 6, 6699–6703.
- 29D. Dam, J. Lee, ACS Appl. Mater. Interfaces 2014, 6, 20729–20737.
- 30X. Dong, H. Xu, X. Wang, Y. Huang, M. Chan-Park, H. Zhang, L. Wang, W. Huang, P. Chen, ACS Nano 2012, 6, 3206–3213.
- 31G. Xu, T. Sheng, L. Chong, T. Ma, C. Sun, X. Zuo, D. Liu, Y. Ren, X. Zhang, Y. Liu, S. Heald, S. Sun, Z. Chen, K. Amine, Nano Lett. 2017, 17, 953–962.
- 32C. Weerakkody, S. Biswas, W. Song, J. He, N. Wasalathanthri, S. Dissanayake, D. Kriz, B. Dutta, S. Suib, Appl. Catal. B 2018, 221, 681–690.
- 33W. Song, Z. Ren, S. Chen, Y. Meng, S. Biswas, P. Nandi, H. Elsen, P. Gao, S. Suib, ACS Appl. Mater. Interfaces 2016, 8, 20802–20813.
- 34Y. Lyu, J. Jocz, R. Xu, O. Williams, C. Sievers, ChemCatChem 2021, 13, 2832–2842.
- 35G. Li, C. Zhang, Z. Wang, H. Huang, H. Peng, X. Li, Appl. Catal. A 2018, 550, 67–76.
- 36T. Cai, H. Huang, W. Deng, Q. Dai, W. Liu, X. Wang, Appl. Catal. B 2015, 166–167, 393–405.
- 37Y. Wan, H. Yang, D. Y. Zhao, Acc. Chem. Res. 2006, 39, 423–432.
- 38P. Zhang, H. Lu, Y. Zhou, L. Zhang, Z. Wu, S. Yang, H. Shi, Q. Zhu, Y. Chen, S. Dai, Nat. Commun. 2015, 6, 8446.
- 39A. Stein, B. J. Melde, R. C. Schroden, Adv. Mater. 2000, 12, 1403–1419.
- 40D. V. Deubel, S. Schlecht, G. Frenking, J. Am. Chem. Soc. 2001, 123, 10085–10094.
- 41R. Martin, M. Kim, A. Asthagiri, J. Weaver, ACS Catal. 2021, 11, 4682–4703.
- 42H. Kang, J. Beauchamp, J. Am. Chem. Soc. 1986, 108, 7502–7509.
- 43Y. Lou, J. Ma, X. Cao, L. Wang, Q. Dai, Z. Zhao, Y. Cai, W. Zhan, Y. Guo, P. Hu, G. Lu, Y. Guo, ACS Catal. 2014, 4, 4143–4152.
- 44D. Gu, C. Jia, C. Weidenthaler, H. Bongard, B. Spliethoff, W. Schmidt, F. Schuth, J. Am. Chem. Soc. 2015, 137, 11407–11418.
- 45X. Wang, Y. Liu, T. Zhang, Y. Luo, Z. Lan, K. Zhang, J. Zuo, L. Jiang, R. Wang, ACS Catal. 2017, 7, 1626–1636.
- 46W. Song, A. S. Poyraz, Y. Meng, Z. Ren, S. Chen, S. L. Suib, Chem. Mater. 2014, 26, 4629–4639.
- 47B. C. Zhu, Chemical Reaction Engineering, Chemical Industry Press, Beijing, 2013.
- 48Z. Ma, K. Mahmudov, V. Aliyeva, A. Gurbanov, Coord. Chem. Rev. 2020, 423, 213482.
- 49E. M. Rodríguez, G. Márquez, M. Tena, P. M. Álvarez, F. J. Beltrán, Appl. Catal. B 2015, 178, 44–53.
- 50J. T. Schneider, D. S. Firak, R. R. Ribeiro, P. P. Zamora, Phys. Chem. Chem. Phys. 2020, 22, 15723–15733.
- 51T. Liu, H. Cheng, L. Sund, F. Liang, C. Zhang, Z. Ying, W. Lin, F. Zhao, Appl. Catal. A 2016, 512, 9–14.
- 52X. Dai, X. Li, S. Tang, X. Peng, X. Zheng, O. Jiang, Catal. Commun. 2021, 149, 106184.
- 53S. Xu, G. Shi, Y. Feng, C. Chen, L. Ji, J. Mol. Catal. 2020, 498, 111244.
- 54M. Liu, S. Shi, L. Zhao, M. Wang, G. Zhu, J. Gao, J. Xu, ACS Appl. Mater. Interfaces 2019, 11, 14702–14712.