Sequential Multistep Excited-State Structural Transformations in N,N′-Diphenyl-dihydrodibenzo[a,c]phenazine Fluorophores
Xin Jin
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorShiyan Guo
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorDr. Xueli Wang
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241 China
Search for more papers by this authorDr. Muyu Cong
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Jinquan Chen
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241 China
Search for more papers by this authorCorresponding Author
Prof. Zhiyun Zhang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorProf. Jianhua Su
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorProf. Da-Hui Qu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. He Tian
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorXin Jin
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorShiyan Guo
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorDr. Xueli Wang
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241 China
Search for more papers by this authorDr. Muyu Cong
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Jinquan Chen
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241 China
Search for more papers by this authorCorresponding Author
Prof. Zhiyun Zhang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorProf. Jianhua Su
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorProf. Da-Hui Qu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. He Tian
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorGraphical Abstract
Substituent engineering of dihydrodibenzo[a,c]phenazine-based fluorophores was demonstrated to access broadband triple fluorescent emissions from ≈350 to ≈850 nm. Mechanistic studies revealed that the steric effect modulates the excited-state potential energy surface, enabling the molecule to undergo multistep transformation along the sequence of bent, planar, and twisted structures.
Abstract
We demonstrate that a single polycyclic π-scaffold can undergo sequential multistep excited-state structural evolution along the bent, planar, and twisted conformers, which coexist to produce intrinsic multiple fluorescence emissions in room-temperature solution. By installing a methyl or trifluoromethyl group on the ortho-site of N,N′-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC), the enhanced steric effects change the fluorescence emission of DPAC from a dominant red band to well-resolved triple bands. The ultra-broadband triple emissions of ortho-substituted DPACs range from ≈350 to ≈850 nm, which is unprecedented for small fluorophores with molecular weight of <500. Ultrafast spectroscopy and theoretical calculations clearly reveal that the above dramatic changes originate from the influence of steric hindrance on the shape of excited state potential energy surface (S1 PES). Compared to the steep S1 PES of parental DPAC, the introduction of ortho-substituent is shown to make the path of structural evolution in S1 wider and flatter, so the ortho-substituted derivatives exhibit slower structural transformations from bent to planar and then to twisted forms, yielding intrinsic triple emission. The results provide the proof of concept that the bent, planar, and twisted emissive states can coexist in the same S1 PES, which greatly expand the fundamental understanding of the excited-state structural relaxation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202305572-sup-0001-DPAC-2Me.cif617.6 KB | Supporting Information |
anie202305572-sup-0001-DPAC-CF3-m.cif819 KB | Supporting Information |
anie202305572-sup-0001-DPAC-CF3.cif978.4 KB | Supporting Information |
anie202305572-sup-0001-DPAC-Me-m.cif953.6 KB | Supporting Information |
anie202305572-sup-0001-DPAC-Me.cif1.1 MB | Supporting Information |
anie202305572-sup-0001-misc_information.pdf9.3 MB | Supporting Information |
anie202305572-sup-0001-Movie-DPAC-CF3.mp43 MB | Supporting Information |
anie202305572-sup-0001-Movie-DPAC-Me.mp43.1 MB | Supporting Information |
anie202305572-sup-0001-Movie-DPAC.mp42.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aO. P. Dimitriev, Chem. Rev. 2022, 122, 8487–8593;
- 1bT. R. Nelson, A. J. White, J. A. Bjorgaard, A. E. Sifain, Y. Zhang, B. Nebgen, S. Fernandez-Alberti, D. Mozyrsky, A. E. Roitberg, S. Tretiak, Chem. Rev. 2020, 120, 2215–2287;
- 1cB. Pettersson Rimgard, Z. Tao, G. A. Parada, L. F. Cotter, S. Hammes-Schiffer, J. M. Mayer, L. Hammarström, Science 2022, 377, 742–747.
- 2
- 2aS. K. Behera, S. Y. Park, J. Gierschner, Angew. Chem. Int. Ed. 2021, 60, 22624–22638;
- 2bR. Gui, H. Jin, X. Bu, Y. Fu, Z. Wang, Q. Liu, Coord. Chem. Rev. 2019, 383, 82–103.
- 3
- 3aA. C. Sedgwick, L. Wu, H.-H. Han, S. D. Bull, X.-P. He, T. D. James, J. L. Sessler, B. Z. Tang, H. Tian, J. Yoon, Chem. Soc. Rev. 2018, 47, 8842–8880;
- 3bC. Y. Peng, J. Y. Shen, Y. T. Chen, P. J. Wu, W. Y. Hung, W. P. Hu, P. T. Chou, J. Am. Chem. Soc. 2015, 137, 14349–14357.
- 4
- 4aZ. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899–4032;
- 4bC. Wang, W. Chi, Q. Qiao, D. Tan, Z. Xu, X. Liu, Chem. Soc. Rev. 2021, 50, 12656–12678;
- 4cG. Haberhauer, Chem. Eur. J. 2017, 23, 9288–9296;
- 4dM. Glasbeek, H. Zhang, Chem. Rev. 2004, 104, 1929–1954.
- 5
- 5aT. Yamakado, S. Takahashi, K. Watanabe, Y. Matsumoto, A. Osuka, S. Saito, Angew. Chem. Int. Ed. 2018, 57, 5438–5443;
- 5bR. Kimura, H. Kuramochi, P. Liu, T. Yamakado, A. Osuka, T. Tahara, S. Saito, Angew. Chem. Int. Ed. 2020, 59, 16430–16435;
- 5cC. Yuan, S. Saito, C. Camacho, S. Irle, I. Hisaki, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 8842–8845;
- 5dD.-G. Chen, Y. Chen, C.-H. Wu, Y.-A. Chen, M.-C. Chen, J.-A. Lin, C.-Y. Huang, J. Su, H. Tian, P.-T. Chou, Angew. Chem. Int. Ed. 2019, 58, 13297–13301.
- 6
- 6aP. Ashokkumar, V. Thiagarajan, S. Vasanthi, P. Ramamurthy, J. Photochem. Photobiol. A 2009, 208, 117–124;
- 6bJ. Heldt, D. Gormin, M. Kasha, Chem. Phys. 1989, 136, 321–334;
- 6cD. Gormin, M. Kasha, Chem. Phys. Lett. 1988, 153, 574–576;
- 6dJ. Heldt, D. Gormin, M. Kasha, Chem. Phys. Lett. 1988, 150, 433–436;
- 6eJ. Massue, D. Jacquemin, G. Ulrich, Chem. Lett. 2018, 47, 1083–1089;
- 6fG. E. Collins, L.-S. Choi, J. H. Callahan, J. Am. Chem. Soc. 1998, 120, 1474–1478.
- 7
- 7aZ. Zhang, Y.-S. Wu, K.-C. Tang, C.-L. Chen, J.-W. Ho, J. Su, H. Tian, P.-T. Chou, J. Am. Chem. Soc. 2015, 137, 8509–8520;
- 7bX. Jin, S. Li, L. Guo, J. Hua, D.-H. Qu, J. Su, Z. Zhang, H. Tian, J. Am. Chem. Soc. 2022, 144, 4883–4896;
- 7cZ. Zhang, X. Jin, X. Sun, J. Su, D.-H. Qu, Coord. Chem. Rev. 2022, 472, 214768–214784.
- 8I. Kawashima, H. Imoto, M. Ishida, H. Furuta, S. Yamamoto, M. Mitsuishi, S. Tanaka, T. Fujii, K. Naka, Angew. Chem. Int. Ed. 2019, 58, 11686–11690.
- 9
- 9aJ. Toldo, O. El Bakouri, M. Solà, P.-O. Norrby, H. Ottosson, ChemPlusChem 2019, 84, 712–721;
- 9bM. Rosenberg, C. Dahlstrand, K. Kilså, H. Ottosson, Chem. Rev. 2014, 114, 5379–5425;
- 9cR. Kotani, L. Liu, P. Kumar, H. Kuramochi, T. Tahara, P. Liu, A. Osuka, P. B. Karadakov, S. Saito, J. Am. Chem. Soc. 2020, 142, 14985–14992;
- 9dN. C. Baird, J. Am. Chem. Soc. 1972, 94, 4941–4948;
- 9eS. Escayola, C. Tonnelé, E. Matito, A. Poater, H. Ottosson, M. Solà, D. Casanova, Angew. Chem. Int. Ed. 2021, 60, 10255–10265.
- 10Z. Zhang, C. L. Chen, Y. A. Chen, Y. C. Wei, J. Su, H. Tian, P. T. Chou, Angew. Chem. Int. Ed. 2018, 57, 9880–9884.
- 11Deposition Numbers 2177854 (for DPAC-2Me), 2177855 (for DPAC-Me), 2177866 (for DPAC-CF3), 2177874 (for DPAC-Me-m), and 2177875 (for DPAC-CF3-m) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 12A. Marini, A. Muñoz-Losa, A. Biancardi, B. Mennucci, J. Phys. Chem. B 2010, 114, 17128–17135.
- 13L. Li, Y. Wang, W. Zhang, S. Yu, X. Wang, N. Gao, Chem. Eng. J. 2020, 381, 122676–122687.
- 14J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen, I. H. M. van Stokkum, J. Stat. Software 2012, 49, 1–22.
- 15
- 15aZ. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 461–467;
- 15bW. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38;
- 15cT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 16J. Zhang, T. Lu, Phys. Chem. Chem. Phys. 2021, 23, 20323–20328.
- 17
- 17aA. Stanger, Eur. J. Org. Chem. 2020, 3120–3127;
- 17bH. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863–866;
- 17cP. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317–6318.