Rashba Band Splitting and Bulk Photovoltaic Effect Induced by Halogen Bonds in Hybrid Layered Perovskites
Jie Xue
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorYuling Huang
SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorDr. Yang Liu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorZhongwei Chen
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorDr. Herman H.-Y. Sung
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorProf. Dr. Ian D. Williams
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorProf. Dr. Zonglong Zhu
Department of Chemistry, City University of Hong Kong, Kowloon, 999077 Hong Kong Hong Kong
Search for more papers by this authorCorresponding Author
Prof. Dr. Lingling Mao
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xihan Chen
SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Haipeng Lu
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorJie Xue
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorYuling Huang
SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorDr. Yang Liu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorZhongwei Chen
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorDr. Herman H.-Y. Sung
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorProf. Dr. Ian D. Williams
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorProf. Dr. Zonglong Zhu
Department of Chemistry, City University of Hong Kong, Kowloon, 999077 Hong Kong Hong Kong
Search for more papers by this authorCorresponding Author
Prof. Dr. Lingling Mao
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xihan Chen
SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Haipeng Lu
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong (SAR), China
Search for more papers by this authorGraphical Abstract
We reported a new series of 2D perovskites featuring thickness-dependent hydrogen and halogen bonding interactions. The strength of non-covalent interaction has a direct impact on the structure symmetry and optoelectronic properties. Stronger halogen interaction leads to centrosymmetry, whereas weaker halogen bonds give rise to non-centrosymmetric structures, Rashba splitting, suppressed radiative recombination, and bulk photovoltaic effect.
Abstract
Non-covalent interactions play an essential role in directing the self-assembly of hybrid organic–inorganic crystals. In hybrid halide perovskites, hydrogen bonding has been the paramount non-covalent interaction. Here, we show another non-covalent interaction, namely, the halogen bond interaction, that directs a symmetry-breaking assembly in a new series of two-dimensional (2D) perovskites (ICH2CH2NH3)2(CH3NH3)n−1PbnI3n+1 (n is the layer thickness, n=1–4). Structural analysis shows that the halogen bond strength varies with the layer thickness. For the odd number (n=1, 3) layered perovskites, stronger halogen interaction leads to centrosymmetric structures, whereas for the n=2 layered perovskites, weaker halogen bonds result in non-centrosymmetric structures. Transient reflection spectroscopy shows a suppressed radiative recombination rate (k2≈0) and prolonged spin lifetime for n=2 structure, suggesting an enhanced Rashba band splitting effect. The structural asymmetry is further confirmed with a reversible bulk photovoltaic effect. Our work provides a new design strategy to enable hybrid perovskites with emerging properties and functionalities associated with structural asymmetry.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202304486-sup-0001-checkCIF_n_2.pdf258.4 KB | Supporting Information |
anie202304486-sup-0001-checkCIF_n_3.pdf299.4 KB | Supporting Information |
anie202304486-sup-0001-checkCIF_n_4.pdf279.3 KB | Supporting Information |
anie202304486-sup-0001-EIA_n_2(2).cif2.1 MB | Supporting Information |
anie202304486-sup-0001-EIA_n_3(2).cif416.8 KB | Supporting Information |
anie202304486-sup-0001-EIA_n_4(2).cif1 MB | Supporting Information |
anie202304486-sup-0001-misc_information.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Zhang, S. Y. Park, C. Yao, H. Lu, S. P. Dunfield, C. Xiao, S. Uličná, X. Zhao, L. Du Hill, X. Chen, X. Wang, L. E. Mundt, K. H. Stone, L. T. Schelhas, G. Teeter, S. Parkin, E. L. Ratcliff, Y.-L. Loo, J. J. Berry, M. C. Beard, Y. Yan, B. W. Larson, K. Zhu, Science 2022, 375, 71–76;
- 1bK. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245–248;
- 1cH. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, A. D. Mohite, Nature 2016, 536, 312–316.
- 2H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444–450.
- 3Y. Huang, Y. Li, E. L. Lim, T. Kong, Y. Zhang, J. Song, A. Hagfeldt, D. Bi, J. Am. Chem. Soc. 2021, 143, 3911–3917.
- 4
- 4aZ. B. Yao, Y. Zhou, X. W. Yin, X. Li, J. H. Han, M. Q. Tai, Y. Zhou, J. B. Li, F. Hao, H. Lin, CrystEngComm 2018, 20, 6704–6712;
- 4bH. Lu, C. Xiao, R. Song, T. Li, A. E. Maughan, A. Levin, R. Brunecky, J. J. Berry, D. B. Mitzi, V. Blum, M. C. Beard, J. Am. Chem. Soc. 2020, 142, 13030–13040;
- 4cT. L. Yu, L. Zhang, J. J. Shen, Y. B. Fu, Y. L. Fu, Dalton Trans. 2014, 43, 13115–13121;
- 4dZ. Xu, D. B. Mitzi, Chem. Mater. 2003, 15, 3632–3637.
- 5
- 5aM. L. Ball, J. V. Milić, Y.-L. Loo, Chem. Mater. 2022, 34, 2495–2502;
- 5bS. Sourisseau, N. Louvain, W. Bi, N. Mercier, D. Rondeau, F. Boucher, J.-Y. Buzaré, C. Legein, Chem. Mater. 2007, 19, 600–607;
- 5cF. El-Mellouhi, E. T. Bentria, A. Marzouk, S. N. Rashkeev, S. Kais, F. H. Alharbi, npj Comput. Mater. 2016, 2, 16035;
- 5dJ. H. Lee, J.-H. Lee, E.-H. Kong, H. M. Jang, Sci. Rep. 2016, 6, 21687.
- 6L. Mao, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 1171–1190.
- 7
- 7aZ. Dai, S. K. Yadavalli, M. Chen, A. Abbaspourtamijani, Y. Qi, N. P. Padture, Science 2021, 372, 618–622;
- 7bC. M. Wolff, L. Canil, C. Rehermann, N. Ngoc Linh, F. Zu, M. Ralaiarisoa, P. Caprioglio, L. Fiedler, M. Stolterfoht, S. Kogikoski, Jr., I. Bald, N. Koch, E. L. Unger, T. Dittrich, A. Abate, D. Neher, ACS Nano 2020, 14, 1445–1456;
- 7cA. Abate, M. Saliba, D. J. Hollman, S. D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H. J. Snaith, Nano Lett. 2014, 14, 3247–3254.
- 8G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478–2601.
- 9M. A. Ruiz-Preciado, D. J. Kubicki, A. Hofstetter, L. McGovern, M. H. Futscher, A. Ummadisingu, R. Gershoni-Poranne, S. M. Zakeeruddin, B. Ehrler, L. Emsley, J. V. Milić, M. Grätzel, J. Am. Chem. Soc. 2020, 142, 1645–1654.
- 10X. Fu, T. He, S. Zhang, X. Lei, Y. Jiang, D. Wang, P. Sun, D. Zhao, H.-Y. Hsu, X. Li, M. Wang, M. Yuan, Chem 2021, 7, 3131–3143.
- 11R. Chakraborty, T. Sheikh, A. Nag, Chem. Mater. 2022, 34, 288–296.
- 12
- 12aS. Sourisseau, N. Louvain, W. Bi, N. Mercier, D. Rondeau, J.-Y. Buzaré, C. Legein, Inorg. Chem. 2007, 46, 6148–6154;
- 12bC. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis, Chem. Mater. 2016, 28, 2852–2867.
- 13Deposition Numbers 2236060, 2236061, and 2236063 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 14W. Klyne, V. Prelog, Experientia 1960, 16, 521–523.
- 15I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232–11235.
- 16L. L. Mao, W. J. Ke, L. Pedesseau, Y. L. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 3775–3783.
- 17
- 17aD. W. deQuilettes, K. Frohna, D. Emin, T. Kirchartz, V. Bulovic, D. S. Ginger, S. D. Stranks, Chem. Rev. 2019, 119, 11007–11019;
- 17bY. Yang, M. Yang, Z. Li, R. Crisp, K. Zhu, M. C. Beard, J. Phys. Chem. Lett. 2015, 6, 4688–4692;
- 17cX. Chen, K. Wang, M. C. Beard, Phys. Chem. Chem. Phys. 2019, 21, 16399–16407.
- 18
- 18aC. Qiu, X. Lin, Y. Wang, G. Feng, C. Ling, J. Liu, J. Du, X. Xiao, X. Wang, P. Zeng, M. Liu, W. Liang, Y. Hu, H. Han, Adv. Energy Mater. 2022, 12, 2202813;
- 18bY. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames, Appl. Phys. Lett. 2007, 91, 141101.
- 19
- 19aM. B. Johnston, L. M. Herz, Acc. Chem. Res. 2016, 49, 146–154;
- 19bX. Chen, H. Lu, Z. Li, Y. Zhai, P. F. Ndione, J. J. Berry, K. Zhu, Y. Yang, M. C. Beard, ACS Energy Lett. 2018, 3, 2273–2279.
- 20
- 20aC. Wehrenfennig, M. Z. Liu, H. J. Snaith, M. B. Johnston, L. M. Herz, Energy Environ. Sci. 2014, 7, 2269–2275;
- 20bJ. Chen, N.-G. Park, Adv. Mater. 2019, 31, 1803019.
- 21P. Azarhoosh, S. McKechnie, J. M. Frost, A. Walsh, M. v. Schilfgaarde, APL Mater. 2016, 4, 091501.
- 22Z. H. Li, J. X. He, X. H. Lv, L. F. Chi, K. O. Egbo, M.-D. Li, T. Tanaka, Q. X. Guo, K. M. Yu, C. P. Liu, Nat. Commun. 2022, 13, 6346.
- 23T. Wang, B. Daiber, J. M. Frost, S. A. Mann, E. C. Garnett, A. Walsh, B. Ehrler, Energy Environ. Sci. 2017, 10, 509–515.
- 24
- 24aT. Trupke, M. A. Green, P. Würfel, P. P. Altermatt, A. Wang, J. Zhao, R. Corkish, J. Appl. Phys. 2003, 94, 4930–4937;
- 24bF. Zheng, L. Z. Tan, S. Liu, A. M. Rappe, Nano Lett. 2015, 15, 7794–7800.
- 25W. Li, Y. L. She, A. S. Vasenko, O. V. Prezhdo, Nanoscale 2021, 13, 10239–10265.
- 26
- 26aX. Chen, H. Lu, Y. Yang, M. C. Beard, J. Phys. Chem. Lett. 2018, 9, 2595–2603;
- 26bX. Chen, H. Lu, K. Wang, Y. Zhai, V. Lunin, P. C. Sercel, M. C. Beard, J. Am. Chem. Soc. 2021, 143, 19438–19445.
- 27A. Malinowski, R. S. Britton, T. Grevatt, R. T. Harley, D. A. Ritchie, M. Y. Simmons, Phys. Rev. B 2000, 62, 13034–13039.
- 28
- 28aL. Z. Tan, F. Zheng, S. M. Young, F. Wang, S. Liu, A. M. Rappe, npj Comput. Mater. 2016, 2, 16026;
- 28bV. M. Fridkin, Crystallogr. Rep. 2001, 46, 654–658.
- 29
- 29aS. Shahrokhi, W. Gao, Y. Wang, P. R. Anandan, M. Z. Rahaman, S. Singh, D. Wang, C. Cazorla, G. Yuan, J.-M. Liu, T. Wu, Small Methods 2020, 4, 2000149;
- 29bZ. Sun, X. Liu, T. Khan, C. Ji, M. A. Asghar, S. Zhao, L. Li, M. Hong, J. Luo, Angew. Chem. Int. Ed. 2016, 55, 6545–6550;
- 29cH.-Y. Ye, W.-Q. Liao, C.-L. Hu, Y. Zhang, Y.-M. You, J.-G. Mao, P.-F. Li, R.-G. Xiong, Adv. Mater. 2016, 28, 2579–2586.
- 30
- 30aT. Morimoto, N. Nagaosa, Sci. Adv. 2016, 2, e1501524;
- 30bM. Nakamura, S. Horiuchi, F. Kagawa, N. Ogawa, T. Kurumaji, Y. Tokura, M. Kawasaki, Nat. Commun. 2017, 8, 281.
- 31J. Hao, H. Lu, S. U. Nanayakkara, S. P. Harvey, J. L. Blackburn, A. J. Ferguson, Adv. Electron. Mater. 2020, 6, 2000831.