Highly-Efficient Ion Gating through Self-Assembled Two-Dimensional Photothermal Metal-Organic Framework Membrane
Yuming Zhou
College of Chemistry, Beijing Normal University, Beijing, 100875 China
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
Search for more papers by this authorTianyi Xiong
Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJiahao Lu
Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Ping Yu
Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Dr. Yanan Jiang
College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Fan Xia
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Lanqun Mao
College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorYuming Zhou
College of Chemistry, Beijing Normal University, Beijing, 100875 China
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
Search for more papers by this authorTianyi Xiong
Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJiahao Lu
Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Ping Yu
Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Dr. Yanan Jiang
College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Fan Xia
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Lanqun Mao
College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorGraphical Abstract
A self-assembled 2D metal-organic framework (MOF) membrane is shown to be an excellent nanofluidic platform for the smart regulation of transverse ion transport. It exhibits extremely high ion gating ratios (up to 104) due to its good photothermal performance. This approach may lead to applications of MOF membranes which have a variety of stimuli responsive properties in ion sieving, biosensing, and energy conversion.
Abstract
Biological ion channels regulate the ion flow across cell membrane via opening or closing of the pores in response to various external stimuli. Replicating the function of high ion gating effects with artificial porous materials has been challenging. Herein, we report that the self-assembled two-dimensional metal-organic framework (MOF) membrane can serve as an excellent nanofluidic platform for smart regulation of ion transport. The MOF membrane with good photothermal performance exhibits extremely high ion gating ratio (up to 104), which is among the highest values in MOF membrane nanochannels for light-controlled ion gating reported so far. By repeatedly turning on and off the light, the nanofluidic device shows outstanding stability and reversibility that can be applied in the remote light-switching system. This work may spark promising applications of MOF membrane with variety of stimuli responsive properties in ion sieving, biosensing, and energy conversion.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202302997-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Deisseroth, P. Hegemann, Science 2017, 357, eaan5544;
- 1bM. J. Thompson, J. E. Baenziger, Nat. Chem. Biol. 2020, 16, 1331–1342;
- 1cS. Mous, G. Gotthard, D. Ehrenberg, S. Sen, T. Weinert, P. J. M. Johnson, D. James, K. Nass, A. Furrer, D. Kekilli, P. Ma, S. Brunle, C. M. Casadei, I. Martiel, F. Dworkowski, D. Gashi, P. Skopintsev, M. Wranik, G. Knopp, E. Panepucci, V. Panneels, C. Cirelli, D. Ozerov, G. F. X. Schertler, M. Wang, C. Milne, J. Standfuss, I. Schapiro, J. Heberle, P. Nogly, Science 2022, 375, 845–851;
- 1dZ. Jia, M. Yazdani, G. Zhang, J. Cui, J. Chen, Nat. Commun. 2018, 9, 3408.
- 2
- 2aV. Nache, T. Eick, E. Schulz, R. Schmauder, K. Benndorf, Nat. Commun. 2013, 4, 2866;
- 2bX. Zheng, Z. Hu, H. Li, J. Yang, Nat. Struct. Mol. Biol. 2022, 29, 40–46.
- 3
- 3aZ. Zhu, D. Wang, Y. Tian, L. Jiang, J. Am. Chem. Soc. 2019, 141, 8658–8669;
- 3bJ. Gao, Y. Feng, W. Guo, L. Jiang, Chem. Soc. Rev. 2017, 46, 5400–5424;
- 3cP. Gao, Q. Ma, D. Ding, D. Wang, X. Lou, T. Zhai, F. Xia, Nat. Commun. 2018, 9, 4557;
- 3dT. Xiong, C. Li, X. He, B. Xie, J. Zong, Y. Jiang, W. Ma, F. Wu, J. Fei, P. Yu, L. Mao, Science 2023, 379, 156–161.
- 4
- 4aA. Esfandiar, B. Radha, F. C. Wang, Q. Yang, S. Hu, S. Garaj, R. R. Nair, A. K. Geim, K. Gopinadhan, Science 2017, 358, 511–513;
- 4bK. Gopinadhan, S. Hu, A. Esfandiar, M. Lozada-Hidalgo, F. C. Wang, Q. Yang, A. V. Tyurnina, A. Keerthi, B. Radha, A. K. Geim, Science 2019, 363, 145–147;
- 4cY. Jiang, N. Liu, W. Guo, F. Xia, L. Jiang, J. Am. Chem. Soc. 2012, 134, 15395–15401;
- 4dY. Jiang, Y. Feng, J. Su, J. Nie, L. Cao, L. Mao, L. Jiang, W. Guo, J. Am. Chem. Soc. 2017, 139, 18739–18746;
- 4eS. Zhou, L. Xie, X. Li, Y. Huang, L. Zhang, Q. Liang, M. Yan, J. Zeng, B. Qiu, T. Liu, J. Tang, L. Wen, L. Jiang, B. Kong, Angew. Chem. Int. Ed. 2021, 60, 26167–26176;
- 4fZ. Zhang, L. Wen, L. Jiang, Nat. Rev. Mater. 2021, 6, 622–639.
- 5
- 5aW. Shi, A. K. Friedman, L. A. Baker, Anal. Chem. 2017, 89, 157–188;
- 5bZ. S. Siwy, M. R. Powell, A. Petrov, E. Kalman, C. Trautmann, R. S. Eisenberg, Nano Lett. 2006, 6, 1729–1734;
- 5cQ. Liu, K. Xiao, L. Wen, H. Lu, Y. Liu, X. Kong, G. Xie, Z. Zhang, Z. Bo, L. Jiang, J. Am. Chem. Soc. 2015, 137, 11976–11983;
- 5dJ. W. Polster, E. T. Acar, F. Aydin, C. Zhan, T. A. Pham, Z. S. Siwy, ACS Nano 2020, 14, 4306–4315;
- 5eC. Yuan, X. Wu, R. Gao, X. Han, Y. Liu, Y. Long, Y. Cui, J. Am. Chem. Soc. 2019, 141, 20187–20197;
- 5fK. Zhang, X. He, Y. Liu, P. Yu, J. Fei, L. Mao, Anal. Chem. 2017, 89, 6794–6799;
- 5gK. Zhang, H. Wei, T. Xiong, Y. Jiang, W. Ma, F. Wu, P. Yu, L. Mao, Chem. Sci. 2021, 12, 7369–7376;
- 5hY. Zhou, W. Guo, J. Cheng, Y. Liu, J. Li, L. Jiang, Adv. Mater. 2012, 24, 962–967;
- 5iP. Li, G. Xie, X. Kong, Z. Zhang, K. Xiao, L. Wen, L. Jiang, Angew. Chem. Int. Ed. 2016, 55, 15637–15641.
- 6
- 6aJ. Lu, Y. Jiang, P. Yu, W. Jiang, L. Mao, Chem. Asian J. 2022, 17, e202200158;
- 6bK. Xiao, O. G. Schmidt, CCS Chem. 2022, 4, 54–65.
- 7
- 7aK. Xiao, X. Kong, Z. Zhang, G. Xie, L. Wen, L. Jiang, J. Photochem. Photobiol. C 2016, 26, 31–47;
- 7bY. Sun, J. Ma, F. Zhang, F. Zhu, Y. Mei, L. Liu, D. Tian, H. Li, Nat. Commun. 2017, 8, 260.
- 8
- 8aS. Horike, D. Umeyama, S. Kitagawa, Acc. Chem. Res. 2013, 46, 2376–2384;
- 8bH. Zhang, X. Li, J. Hou, L. Jiang, H. Wang, Chem. Soc. Rev. 2022, 51, 2224–2254;
- 8cH. Furukawa, K. E. Cordova, M. O′Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 8dN. Hanikel, M. S. Prevot, O. M. Yaghi, Nat. Nanotechnol. 2020, 15, 348–355;
- 8eH. Wu, X. Lou, Sci. Adv. 2017, 3, eaap9252;
- 8fD. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 2017, 16, 220–224.
- 9
- 9aJ. Lu, H. Zhang, J. Hou, X. Li, X. Hu, Y. Hu, C. D. Easton, Q. Li, C. Sun, A. W. Thornton, M. R. Hill, X. Zhang, G. Jiang, J. Z. Liu, A. J. Hill, B. D. Freeman, L. Jiang, H. Wang, Nat. Mater. 2020, 19, 767–774;
- 9bX. Li, M. R. Hill, H. Wang, H. Zhang, Adv. Mater. Technol. 2021, 6, 2000790.
- 10
- 10aT. Qian, H. Zhang, X. Li, J. Hou, C. Zhao, Q. Gu, H. Wang, Angew. Chem. Int. Ed. 2020, 59, 13051–13056;
- 10bT. Qian, C. Zhao, R. Wang, X. Chen, J. Hou, H. Wang, H. Zhang, Nanoscale 2021, 13, 17396–17403.
- 11
- 11aS. Hussain, Z. Deng, A. Khan, P. Li, Z. Li, Z. Fang, X. Wan, X. Peng, J. Membr. Sci. 2021, 620, 118888;
- 11bS. Wang, P. Li, S. Fan, Z. Fang, X. Wang, Z. Li, X. Peng, Dalton Trans. 2021, 50, 2731–2735;
- 11cS. Fan, S. Wang, X. Wang, X. Wan, Z. Fang, X. Pi, Z. Ye, X. Peng, Sci. China Mater. 2021, 64, 1076–1086.
- 12
- 12aY. Jiang, W. Ma, Y. Qiao, Y. Xue, J. Lu, J. Gao, N. Liu, F. Wu, P. Yu, L. Jiang, L. Mao, Angew. Chem. Int. Ed. 2020, 59, 12795–12799;
- 12bJ. Lu, Y. Jiang, T. Xiong, P. Yu, W. Jiang, L. Mao, Anal. Chem. 2022, 94, 4328–4334.
- 13
- 13aY. Zhao, J. Wang, R. Pei, J. Am. Chem. Soc. 2020, 142, 10331–10336;
- 13bY. Zhang, L. Yang, Y. Yang, W. Li, B. Liu, X. Jin, M. Zhou, R. Long, L. Jiang, W. Guo, CCS Chem. 2021, 3, 3595–3607;
- 13cY. Qiao, J. Lu, W. Ma, Y. Xue, Y. Jiang, N. Liu, P. Yu, L. Mao, Chem. Commun. 2020, 56, 3508–3511.
- 14
- 14aM. Tian, F. Pei, M. Yao, Z. Fu, L. Lin, G. Wu, G. Xu, H. Kitagawa, X. Fang, Energy Storage Mater. 2019, 21, 14–21;
- 14bG. Xu, T. Yamada, K. Otsubo, S. Sakaida, H. Kitagawa, J. Am. Chem. Soc. 2012, 134, 16524–16527.
- 15
- 15aZ. Wang, J. Zhu, S. Xu, Y. Zhang, B. Van der Bruggen, J. Membr. Sci. 2021, 633, 119397;
- 15bS. Hussain, X. Wan, Z. Li, X. Peng, Sep. Purif. Technol. 2021, 268, 118688;
- 15cG. Wu, H. Zhou, Z. Fu, W. Li, J. Xiu, M. Yao, Q. Li, G. Xu, Angew. Chem. Int. Ed. 2021, 60, 9931–9935.
- 16
- 16aH. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou, L. Jiang, J. Z. Liu, B. D. Freeman, A. J. Hill, H. Wang, Sci. Adv. 2018, 4, eaaq0066;
- 16bC. Li, Y. Jiang, Z. Wu, Y. Zhang, C. Huang, S. Cheng, Y. You, P. Zhang, W. Chen, L. Mao, L. Jiang, Angew. Chem. Int. Ed. 2023, 62, e202215906.
- 17
- 17aJ. Shao, K. Raidongia, A. R. Koltonow, J. Huang, Nat. Commun. 2015, 6, 7602;
- 17bT. Li, S. Li, W. Kong, C. Chen, E. Hitz, C. Jia, J. Dai, X. Zhang, R. Briber, Z. Siwy, M. Reed, L. Hu, Sci. Adv. 2019, 5, eaau4238.
- 18
- 18aA. J. Howarth, Y. Liu, P. Li, Z. Li, T. Wang, J. Hupp, O. K. Farha, Nat. Rev. Mater. 2016, 1, 15018;
- 18bM. Ding, X. Cai, H. Jiang, Chem. Sci. 2019, 10, 10209–10230;
- 18cR. Batra, C. Chen, T. G. Evans, K. S. Walton, R. Ramprasad, Nat. Mach. Intell. 2020, 2, 704–710.
- 19
- 19aH. Sun, Q. Zhang, J. Li, S. Peng, X. Wang, R. Cai, Nano Today 2021, 37, 101073;
- 19bD. Xu, Z. Li, L. Li, J. Wang, Adv. Funct. Mater. 2020, 30, 2000712.
- 20
- 20aJ. Lao, R. Lv, J. Gao, A. Wang, J. Wu, J. Luo, ACS Nano 2018, 12, 12464–12471;
- 20bS. Wang, S. Fan, Z. Fang, Y. Hu, M. Dong, X. Peng, ACS Appl. Nano Mater. 2021, 4, 8352–8359.
- 21H. Liang, Y. Guo, X. Peng, B. Chen, J. Mater. Chem. A 2020, 8, 11399–11405.
- 22
- 22aJ. Peng, Y. Pan, Z. Yu, J. Wu, J. Wu, Y. Zhou, Y. Guo, X. Wu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2018, 57, 13533–13537;
- 22bA. B. Kanj, A. Chandresh, A. Gerwien, S. Grosjean, S. Bräse, Y. Wang, H. Dube, L. Heinke, Chem. Sci. 2020, 11, 1404–1410.
- 23
- 23aR. Parameswaran, J. L. Carvalho de Souza, Y. Jiang, M. J. Burke, J. F. Zimmerman, K. Koehler, A. W. Phillips, J. Yi, E. J. Adams, F. Bezanilla, B. Tian, Nat. Nanotechnol. 2018, 13, 260–266;
- 23bH. Liang, Y. Guo, Y. Shi, X. Peng, B. Liang, B. Chen, Angew. Chem. Int. Ed. 2020, 59, 7732–7737;
- 23cR. Xiong, D. Hua, J. Van Hoeck, D. Berdecka, L. Leger, S. De Munter, J. C. Fraire, L. Raes, A. Harizaj, F. Sauvage, G. Goetgeluk, M. Pille, J. Aalders, J. Belza, T. Van Acker, E. Bolea-Fernandez, T. Si, F. Vanhaecke, W. H. De Vos, B. Vandekerckhove, J. van Hengel, K. Raemdonck, C. Huang, S. C. De Smedt, K. Braeckmans, Nat. Nanotechnol. 2021, 16, 1281–1291.