Revealing the Interfacial Chemistry of Fluoride Alkyl Magnesium Salts in Magnesium Metal Batteries
Juncai Long
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorDr. Shuangshuang Tan
College of Materials Science and Engineering, Chongqing University, Chongqing, 400030 China
Search for more papers by this authorJunjun Wang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorDr. Fangyu Xiong
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorLianmeng Cui
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorCorresponding Author
Prof. Qinyou An
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000 China
Search for more papers by this authorCorresponding Author
Prof. Liqiang Mai
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000 China
Search for more papers by this authorJuncai Long
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorDr. Shuangshuang Tan
College of Materials Science and Engineering, Chongqing University, Chongqing, 400030 China
Search for more papers by this authorJunjun Wang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorDr. Fangyu Xiong
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorLianmeng Cui
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorCorresponding Author
Prof. Qinyou An
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000 China
Search for more papers by this authorCorresponding Author
Prof. Liqiang Mai
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000 China
Search for more papers by this authorGraphical Abstract
Abstract
Exploring promising electrolyte-system with high reversible Mg plating/stripping and excellent stability is essential for rechargeable magnesium batteries (RMBs). Fluoride alkyl magnesium salts (Mg(ORF)2) not only possess high solubility in ether solvents but also compatible with Mg metal anode, thus holding a vast application prospect. Herein, a series of diverse Mg(ORF)2 were synthesized, among them, perfluoro-tert-butanol magnesium (Mg(PFTB)2)/AlCl3/MgCl2 based electrolyte demonstrates highest oxidation stability, and promotes the in situ formation of robust solid electrolyte interface. Consequently, the fabricated symmetric cell sustains a long-term cycling over 2000 h, and the asymmetric cell exhibits a stable Coulombic efficiency of 99.5 % over 3000 cycles. Furthermore, the Mg||Mo6S8 full cell maintains a stable cycling over 500 cycles. This work presents guidance for understanding structure–property relationships and electrolyte applications of fluoride alkyl magnesium salts.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202301934-sup-0001-misc_information.pdf8.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 2020, 5, 646–656;
- 1bX. Liu, A. Du, Z. Guo, C. Wang, X. Zhou, J. Zhao, F. Sun, S. Dong, G. Cui, Adv. Mater. 2022, 34, 2201886;
- 1cR. Davidson, A. Verma, D. Santos, F. Hao, C. Fincher, S. Xiang, J. Van Buskirk, K. Xie, M. Pharr, P. P. Mukherjee, S. Banerjee, ACS Energy Lett. 2019, 4, 375–376.
- 2
- 2aS. Hou, X. Ji, K. Gaskell, P.-f. Wang, L. Wang, J. Xu, R. Sun, O. Borodin, C. Wang, Science 2021, 374, 172–178;
- 2bY. Zhu, X. Guo, Y. Lei, W. Wang, A.-H. Emwas, Y. Yuan, Y. He, H. N. Alshareef, Energy Environ. Sci. 2022, 15, 1282–1292;
- 2cH. Dong, O. Tutusaus, Y. Liang, Y. Zhang, Z. Lebens-Higgins, W. Yang, R. Mohtadi, Y. Yao, Nat. Energy 2020, 5, 1043–1050.
- 3
- 3aS. B. Son, T. Gao, S. P. Harvey, K. X. Steirer, A. Stokes, A. Norman, C. Wang, A. Cresce, K. Xu, C. Ban, Nat. Chem. 2018, 10, 532–539;
- 3bY. Zhao, A. Du, S. Dong, F. Jiang, Z. Guo, X. Ge, X. Qu, X. Zhou, G. Cui, ACS Energy Lett. 2021, 6, 2594–2601.
- 4
- 4aR. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Joule 2019, 3, 27–52;
- 4bW. Zhao, Z. Pan, Y. Zhang, Y. Liu, H. Dou, Y. Shi, Z. Zuo, B. Zhang, J. Chen, X. Zhao, X. Yang, Angew. Chem. Int. Ed. 2022, 61, e202205187.
- 5D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724–727.
- 6O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, J. Electrochem. Soc. 2008, 155, A103.
- 7F. F. Wang, Y. S. Guo, J. Yang, Y. Nuli, S. Hirano, Chem. Commun. 2012, 48, 10763–10765.
- 8
- 8aR. E. Doe, R. Han, J. Hwang, A. J. Gmitter, I. Shterenberg, H. D. Yoo, N. Pour, D. Aurbach, Chem. Commun. 2014, 50, 243–245;
- 8bJ. Luo, S. He, T. L. Liu, ACS Energy Lett. 2017, 2, 1197–1202.
- 9
- 9aH. Zhang, L. Qiao, M. Armand, Angew. Chem. Int. Ed. 2022, 61, e202214054;
- 9bJ. Muldoon, C. B. Bucur, T. Gregory, Angew. Chem. Int. Ed. 2017, 56, 12064–12084;
- 9cN. T. Hahn, T. J. Seguin, K. C. Lau, C. Liao, B. J. Ingram, K. A. Persson, K. R. Zavadil, J. Am. Chem. Soc. 2018, 140, 11076–11084.
- 10
- 10aZ. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C. Bonatto Minella, X. Yu, A. Manthiram, R. J. Behm, M. Ruben, M. Fichtner, ACS Energy Lett. 2018, 3, 2005–2013;
- 10bP. Jankowski, Z. Li, Z. Zhao-Karger, T. Diemant, M. Fichtner, T. Vegge, J. M. G. Lastra, Energy Storage Mater. 2022, 45, 1133–1143.
- 11W. Ren, D. Wu, Y. NuLi, D. Zhang, Y. Yang, Y. Wang, J. Yang, J. Wang, ACS Energy Lett. 2021, 6, 3212–3220.
- 12
- 12aJ. Luo, Y. Bi, L. Zhang, X. Zhang, T. L. Liu, Angew. Chem. Int. Ed. 2019, 58, 6967–6971;
- 12bO. Tutusaus, R. Mohtadi, T. S. Arthur, F. Mizuno, E. G. Nelson, Y. V. Sevryugina, Angew. Chem. Int. Ed. 2015, 54, 7900–7904.
- 13J. Xiao, X. Zhang, H. Fan, Y. Zhao, Y. Su, H. Liu, X. Li, Y. Su, H. Yuan, T. Pan, Q. Lin, L. Pan, Y. Zhang, Adv. Mater. 2022, 34, 2203783.
- 14J. T. Herb, C. A. Nist-Lund, C. B. Arnold, ACS Energy Lett. 2016, 1, 1227–1232.
- 15D. Huang, S. Tan, M. Li, D. Wang, C. Han, Q. An, L. Mai, ACS Appl. Mater. Interfaces 2020, 12, 17474–17480.
- 16
- 16aY. Yang, W. Wang, Y. Nuli, J. Yang, J. Wang, ACS Appl. Mater. Interfaces 2019, 11, 9062–9072;
- 16bM. Ulaganathan, C. M. Mathew, S. Rajendran, Electrochim. Acta 2013, 93, 230–235.
- 17M. Cheng, W. Ren, D. Zhang, S. Zhang, Y. Yang, X. Lv, J. Yang, J. Wang, Y. NuLi, Energy Storage Mater. 2022, 51, 764–776.
- 18A. Du, Z. Zhang, H. Qu, Z. Cui, L. Qiao, L. Wang, J. Chai, T. Lu, S. Dong, T. Dong, H. Xu, X. Zhou, G. Cui, Energy Environ. Sci. 2017, 10, 2616–2625.
- 19
- 19aZ. Zhao-Karger, X. Zhao, D. Wang, T. Diemant, R. J. Behm, M. Fichtner, Adv. Energy Mater. 2015, 5, 1401155;
- 19bZ. Zhang, Z. Cui, L. Qiao, J. Guan, H. Xu, X. Wang, P. Hu, H. Du, S. Li, X. Zhou, S. Dong, Z. Liu, G. Cui, L. Chen, Adv. Energy Mater. 2017, 7, 1602055.
- 20Y. Li, S. Guan, H. Huo, Y. Ma, Y. Gao, P. Zuo, G. Yin, Adv. Funct. Mater. 2021, 31, 2100650.
- 21T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 22J. Holoubek, Q. Yan, H. Liu, E. J. Hopkins, Z. Wu, S. Yu, J. Luo, T. A. Pascal, Z. Chen, P. Liu, ACS Energy Lett. 2022, 7, 675–682.
- 23
- 23aN. Yao, S.-Y. Sun, X. Chen, X.-Q. Zhang, X. Shen, Z.-H. Fu, R. Zhang, Q. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202210859;
- 23bX. Chen, X. Shen, T.-Z. Hou, R. Zhang, H.-J. Peng, Q. Zhang, Chem 2020, 6, 2242–2256.
- 24Y.-s. Guo, F. Zhang, J. Yang, F.-f. Wang, Y. NuLi, S.-i. Hirano, Energy Environ. Sci. 2012, 5, 9100–9106.
- 25Y. Zhao, T. Zhou, T. Ashirov, M. E. Kazzi, C. Cancellieri, L. P. H. Jeurgens, J. W. Choi, A. Coskun, Nat. Commun. 2022, 13, 2575.
- 26S. Zhang, M. Cheng, P. Zhang, Y. Wang, D. Zhang, Y. Yang, J. Wang, Y. NuLi, Chem. Commun. 2022, 58, 11969–11972.
- 27
- 27aJ. Zhang, X. Guan, R. Lv, D. Wang, P. Liu, J. Luo, Energy Storage Mater. 2020, 26, 408–413;
- 27bH. Fan, Z. Zheng, L. Zhao, W. Li, J. Wang, M. Dai, Y. Zhao, J. Xiao, G. Wang, X. Ding, H. Xiao, J. Li, Y. Wu, Y. Zhang, Adv. Funct. Mater. 2020, 30, 1909370;
- 27cK. Tang, A. Du, S. Dong, Z. Cui, X. Liu, C. Lu, J. Zhao, X. Zhou, G. Cui, Adv. Mater. 2020, 32, 1904987;
- 27dG. Yang, Y. Li, C. Zhang, J. Wang, Y. Bai, C. Y. J. Lim, M.-F. Ng, Z. Chang, S. Kumar, Z. Sofer, W. Liu, Z. W. Seh, Nano Lett. 2022, 22, 9138–9146;
- 27eR. Horia, D.-T. Nguyen, A. Y. S. Eng, Z. W. Seh, Nano Lett. 2021, 21, 8220–8228;
- 27fW. Li, S. Cheng, J. Wang, Y. Qiu, Z. Zheng, H. Lin, S. Nanda, Q. Ma, Y. Xu, F. Ye, M. Liu, L. Zhou, Y. Zhang, Angew. Chem. Int. Ed. 2016, 55, 6406–6410.
- 28Z. Liang, C. Ban, Angew. Chem. Int. Ed. 2021, 60, 11036–11047.
- 29D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao, Y. Guo, Z. Zhang, S. Wu, L. Yin, Z. Weng, F. Kang, Q.-H. Yang, Nat. Sustainability 2022, 5, 205–213.
- 30B. Roy, P. Cherepanov, C. Nguyen, C. Forsyth, U. Pal, T. C. Mendes, P. Howlett, M. Forsyth, D. MacFarlane, M. Kar, Adv. Energy Mater. 2021, 11, 2101422.
- 31H. Dou, X. Zhao, Y. Zhang, W. Zhao, Y. Yan, Z.-F. Ma, X. Wang, X. Yang, Nano Energy 2021, 86, 106087.
- 32J. Xiao, X. Zhang, H. Fan, Q. Lin, L. Pan, H. Liu, Y. Su, X. Li, Y. Su, S. Ren, Y. Lin, Y. Zhang, Adv. Energy Mater. 2022, 12, 2202602.
- 33Z. Yu, P. E. Rudnicki, Z. Zhang, Z. Huang, H. Celik, S. T. Oyakhire, Y. Chen, X. Kong, S. C. Kim, X. Xiao, H. Wang, Y. Zheng, G. A. Kamat, M. S. Kim, S. F. Bent, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2022, 7, 94–106.
- 34B. Li, R. Masse, C. Liu, Y. Hu, W. Li, G. Zhang, G. Cao, Energy Storage Mater. 2019, 22, 96–104.
- 35Y. Y. Hwang, N. K. Lee, S. H. Park, J. Shin, Y. J. Lee, Energy Storage Mater. 2022, 51, 108–121.
- 36Y. Zhang, J. Li, W. Zhao, H. Dou, X. Zhao, Y. Liu, B. Zhang, X. Yang, Adv. Mater. 2022, 34, 2108114.
- 37Z. Yang, X. Pan, Y. Shen, R. Chen, T. Li, L. Xu, L. Mai, Small 2022, 18, 2107743.