Long-Range Interactions in Diatomic Catalysts Boosting Electrocatalysis
Wen-Hao Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorJiarui Yang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorWen-Hao Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorJiarui Yang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGraphical Abstract
Diatomic catalysts have attracted much attention, especially in electrochemistry. However, there have been no comprehensive reviews on long-range interactions (LRIs) between metallic centres. This Minireview introduces the key aspects of LRIs and highlights opportunities for regulating electrocatalytic mechanisms, thus presenting guidelines for the targeted usage of LRIs.
Abstract
The simultaneous presence of two active metal centres in diatomic catalysts (DACs) leads to the occurrence of specific interactions between active sites. Such interactions, referred to as long-range interactions (LRIs), play an important role in determining the rate and selectivity of a reaction. The optimal combination of metal centres must be determined to achieve the targeted efficiency. To date, various types of DACs have been synthesised and applied in electrochemistry. However, LRIs have not been systematically summarised. Herein, the regulation, mechanism, and electrocatalytic applications of LRIs are comprehensively summarised and discussed. In addition to the basic information above, the challenges, opportunities, and future development of LRIs in DACs are proposed in order to present an overall view and reference for future research.
Conflict of interest
The authors declare no conflict of interest.
References
- 1R. A. Kerr, R. F. Servise, Science 2005, 309, 101.
- 2P. Losch, W. X. Huang, E. D. Goodman, C. J. Wrasman, A. Holm, A. R. Riscoe, J. A. Schwalbe, M. Cargnello, Nano Today 2019, 24, 15–47.
- 3J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K.-Y. Wong, Chem. Rev. 2020, 120, 851–918.
- 4I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208–8271.
- 5J. W. M. Crawley, I. E. Gow, N. Lawes, I. Kowalec, L. Kabalan, C. R. A. Catlow, A. J. Logsdail, S. H. Taylor, N. F. Dummer, G. J. Hutchings, Chem. Rev. 2022, 122, 6795–6849.
- 6B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634–641.
- 7C. Xia, Y. Qiu, Y. Xia, P. Zhu , G. King, X. Zhang, Z. Wu, J. Y. Kim , D. A. Cullen, D. Zheng, P. Li, M. Shakouri, E. Heredia, P. Cui, H. N. Alshareef, Y. Hu, H. Wang, Nat. Chem. 2021, 13, 887–894.
- 8M. D. Korzyński, C. Copéret, Trends Chem. 2021, 3, 850.
- 9S. K. Kaiser, Z. Chen, D. F. Akl, S. Mitchell, J. Pérez-Ramírez, Chem. Rev. 2020, 120, 11703–11809.
- 10T. Zhang, A. G. Walsh, J. Yu, P. Zhang, Chem. Soc. Rev. 2021, 50, 569–588.
- 11
- 11aL. L. Li, X. Chang, X. Y. Lin, Z. J. Zhao, J. L. Gong, Chem. Soc. Rev. 2020, 49, 8156–8178;
- 11bY. Xiong, W. Sun, Y. Han, et al., Nano Res. 2021, 14, 2418–2423.
- 12Y. Zhang, J. Yang, R. Ge, J. Zhang, J. M. Cairney, Y. Li, M. Zhu, S. Li, W. Li, Coord. Chem. Rev. 2022, 461, 214493.
- 13J. Shan, C. Ye, Y. Jiang, M. Jaroniec, Y. Zheng, S. Z. Qiao, Sci. Adv. 2022, 8, eabo0762.
- 14R. Lang, X. Du, Y. Huang, X. Jiang, Q. Zhang, Y. Guo, K. Liu, B. Qiao, A. Wang, T. Zhang, Chem. Rev. 2020, 120, 11986–12043.
- 15T. W. van Deelen, C. H. Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955–970.
- 16J. Yang, W. Li, D. Wang, Y. Li, Adv. Mater. 2020, 32, 2003300.
- 17X. Zheng, B. Li, Q. Wang, et al., Nano Res. 2022, 15, 7806–7839.
- 18Z. He, K. He, A. W. Robertson, A. I. Kirkland, D. Kim, J. Ihm, E. Yoon, G.-D. Lee, J. H. Warner, Nano Lett. 2014, 14, 3766–3772.
- 19
- 19aS. Chen, B. Gong, J. Gu, Y. Lin, B. Yang, Q. Gu, R. Jin, Q. Liu, W. Ying, X. Shi, W. Xu, L. Cai, Y. Li, Z. Sun, S. Wei, W. Zhang, J. Lu, Angew. Chem. Int. Ed. 2022, 61, e202211919; Angew. Chem. 2022, 134, e202211919;
- 19bJ. H. Fu, J. H. Dong, R. Si, K. J. Sun, J. Y. Zhang, M. R. Li, N. N. Yu, B. S. Zhang, M. G. Humphrey, Q. Fu, J. H. Huang, ACS Catal. 2021, 11, 1952–1961.
- 20H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun, H. Cheng, W. Liu, C. Wang, J. Li, X. Huang, T. Yao, J. Yang, S. Wei, J. Lu, Nat. Commun. 2017, 8, 1070.
- 21Y. S. Wei, L. Sun, M. Wang, J. Hong, L. Zou, H. Liu, Y. Wang, M. Zhang, Z. Liu, Y. Li, S. Horike, K. Suenaga, Q. Xu, Angew. Chem. Int. Ed. 2020, 59, 16013–16022; Angew. Chem. 2020, 132, 16147–16156.
- 22L. Bai, C. S. Hsu, D. T. L. Alexander, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2019, 141, 14190–14199.
- 23For reviews, see:
- 23aT. He, A. R. P. Santiago, Y. Kong, M. A. Ahsan, R. Luque, A. Du, H. Pan, Small 2022, 18, 2106091;
- 23bJ. Zhang, Q.-a. Huang, J. Wang, J. Wang, J. Zhang, Y. Zhao, Chin. J. Catal. 2020, 41, 783–798;
- 23cC.-C. Hou, H.-F. Wang, C. Li, Q. Xu, Energy Environ. Sci. 2020, 13, 1658–1693;
- 23dY. Wang, X. Zheng, D. Wang, Nano Res. 2022, 15, 1730–1752;
- 23eR. Li, D. Wang, Nano Res. 2022, 15, 6888–6923.
- 24ORR:
- 24aD. Yu, Y. Ma, F. Hu, C.-C. Lin, L. Li, H.-Y. Chen, X. Han, S. Peng, Adv. Energy Mater. 2021, 11, 2101242;
- 24bM. Liu, N. Li, S. Cao, X. Wang, X. Lu, L. Kong, Y. Xu, X.-H. Bu, Adv. Mater. 2022, 34, 2107421;
- 24cH. Li, S. Di, P. Niu, S. Wang, J. Wang, L. Li, Energy Environ. Sci. 2022, 15, 1601–1610;
- 24dX. Yang, C. Priest, Y. Hou, G. Wu, SusMat 2022, https://doi.org/10.1002/sus2.69;
- 24eK. Wang, J. Liu, Z. Tang, L. Li, Z. Wang, M. Zubair, F. Ciucci, L. Thomsen, J. Wright, N. M. Bedford, J. Mater. Chem. A 2021, 9, 13044;
- 24fT. Cui, Y.-P. Wang, T. Ye, J. Wu, Z. Chen, J. Li, Y. Lei, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2022, 61, e202115219; Angew. Chem. 2022, 134, e202115219;
- 24gF. Pan, T. Jin, W. Yang, H. Li, Y. Cao, J. Hu, X. Zhou, H. Liu, X. Duan, Chem Catalysis 2021, 1, 734.
- 25HER:
- 25aX. Wang, C. Xu, M. Jaroniec, Y. Zheng, S.-Z. Qiao, Nat. Commun. 2019, 10, 4876;
- 25bL. Zhang, R. Si, H. Liu, N. Chen, Q. Wang, K. Adair, Z. Wang, J. Chen, Z. Song, J. Li, M. N. Banis, R. Li, T.-K. Sham, M. Gu, L.-M. Liu, G. A. Botton, X. Sun, Nat. Commun. 2019, 10, 4936;
- 25cY. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu, D. Do, B. Zhou, J. Dong, W. Yan, Y. Qin, L. Fang, R. Feng, J. Zhou, P. Zhang, J. Dong, G. Yu, Y. Liu, X. Zhang, X. Fan, Sci. Adv. 2020, 6, eaba6586;
- 25dP. Zhu, X. Xiong, D. Wang, Nano Res. 2022, 15, 5792–5815.
- 26
- 26aB. Wang, C. Cheng, M. Jin, J. He, H. Zhang, W. Ren, Y. Li, et al., Angew. Chem. Int. Ed. 2022, 61, e202207268; Angew. Chem. 2022, 134, e202207268;
- 26bX. Zheng, J. Yang, Z. Xu, Q. Wang, J. Wu, E. Zhang, Y. Li, et al., Angew. Chem. Int. Ed. 2022, 61, e202205946; Angew. Chem. 2022, 134, e202205946.
- 27J. Yang, W. H. Li, S. Tan, K. Xu, Y. Wang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 19085–19091; Angew. Chem. 2021, 133, 19233–19239.
- 28W.-H. Li, J. Yang, H. Jing, J. Zhang, Y. Wang, J. Li, J. Zhao, D. Wang, Y. Li, J. Am. Chem. Soc. 2021, 143, 15453–15461.
- 29Q. Wang, B. Jin, M. Hu, C. Jia, X. Li, E. Sharman, J. Jiang, J. Phys. Chem. C 2021, 125, 5616–5622.
- 30C. Jia, Q. Wang, J. Yang, K. Ye, X. Li, W. Zhong, H. Shen, E. Sharman, Y. Luo, J. Jiang, ACS Catal. 2022, 12, 3420–3429.
- 31J. Yang, W. Fu, C. Chen, W. Chen, W. Huang, R. Yang, Q. Kong, B. Zhang, J. Zhao, C. Chen, J. Luo, F. Yang, X. Duan, Z. Jiang, Y. Qin, ACS Catal. 2021, 11, 4146–4156.
- 32X. Meng, C. Ma, L. Jiang, R. Si, X. Meng, Y. Tu, L. Yu, X. Bao, D. Deng, Angew. Chem. Int. Ed. 2020, 59, 10502–10507; Angew. Chem. 2020, 132, 10588–10593.
- 33Q. He, D. Liu, J. H. Lee, Y. Liu, Z. Xie, S. Hwang, S. Kattel, L. Song, J. G. Chen, Angew. Chem. Int. Ed. 2020, 59, 3033–3037; Angew. Chem. 2020, 132, 3057–3061.
- 34G. Li, C. Fu, W. Shi, L. Jiao, J. Wu, Q. Yang, R. Saha, M. E. Kamminga, A. K. Srivastava, E. Liu, A. N. Yazdani, N. Kumar, J. Zhang, G. R. Blake, X. Liu, M. Fahlman, S. Wirth, G. Auffermann, J. Gooth, S. Parkin, V. Madhavan, X. Feng, Y. Sun, C. Felser, Angew. Chem. Int. Ed. 2019, 58, 13107; Angew. Chem. 2019, 131, 13241.
- 35Y. Ying, X. Luo, J. Qiao, H. Huang, Adv. Funct. Mater. 2021, 31, 2007423.
- 36H. Liu, H. Rong, J. Zhang, ChemSusChem 2022, 15, e202200498.
- 37N. Zhang, X. Zhang, Y. Kang, C. Ye, R. Jin, H. Yan, R. Lin, J. Yang, Q. Xu, Y. Wang, Q. Zhang, L. Gu, L. Liu, W. Song, J. Liu, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 13388–13393; Angew. Chem. 2021, 133, 13500–13505.
- 38Y. Wang, B. J. Park, V. K. Paidi, R. Huang, Y. Lee, K.-J. Noh, K.-S. Lee, J. W. Han, ACS Energy Lett. 2022, 7, 640–649.
- 39K. Leng, J. Zhang, Y. Wang, D. Li, L. Bai, J. Shi, X. Li, L. Zheng, J. Bai, Y. Qu, Adv. Funct. Mater. 2022, 32, 2205637.
- 40L. Han, P. Ou, W. Liu, X. Wang, H.-T. Wang, R. Zhang, C.-W. Pao, X. Liu, W.-F. Pong, J. Song, Z. Zhuang, V. M. Michael, J. Luo, H. L. Xin, Sci. Adv. 2022, 8, eabm3779.
- 41X. Zhou, J. Gao, Y. Hu, Z. Jin, K. Hu, K. M. Reddy, Q. Yuan, X. Lin, H.-J. Qiu, Nano Lett. 2022, 22, 3392–3399.
- 42M. Xiao, J. Zhu, S. Li, G. Li, W. Liu, Y.-P. Deng, Z. Bai, L. Ma, M. Feng, T. Wu, ACS Catal. 2021, 11, 8837.
- 43L. Zhang, X. Guo, S. Zhang, S. Huang, J. Mater. Chem. A 2022, 10, 11600–11612.
- 44M. Sun, T. Wu, A. W. Dougherty, M. Lam, B. Huang, Y. Li, C. H. Yan, Adv. Energy Mater. 2021, 11, 2003796.
- 45
- 45aW. Tong, B. Huang, P. Wang, L. Li, Q. Shao, X. Huang, Angew. Chem. Int. Ed. 2020, 59, 2649; Angew. Chem. 2020, 132, 2671;
- 45bL. Han, Z. Ren, P. Ou, H. Cheng, N. Rui, L. Lin, X. Liu, L. Zhuo, J. Song, J. Sun, J. Luo, H. L. Xin, Angew. Chem. Int. Ed. 2021, 60, 345; Angew. Chem. 2021, 133, 349;
- 45cL. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Nat. Energy 2020, 5, 61;
- 45dX. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc. 2020, 142, 5709.
- 46D. Liu, Y. Zhao, C. Wu, W. Xu, S. Xi, M. Chen, L. Yang, Y. Zhou, Q. He, X. Li, B. Ge, L. Song, J. Jiang, Q. Yan, Nano Energy 2022, 98, 107296.
- 47W. Wan, Y. Zhao, S. Wei, C. A. Triana, J. Li, A. Arcifa, C. S. Allen, R. Cao, G. R. Patzke, Nat. Commun. 2021, 12, 5589.
- 48Z. Wang, X. Jin, C. Zhu, Y. Liu, H. Tan, R. Ku, Y. Zhang, L. Zhou, Z. Liu, S. Hwang, H. Fan, Adv. Mater. 2021, 33, 2104718.
- 49
- 49aZ. Zeng, L. Y. Gan, H. B. Yang, X. Su, J. Gao, W. Liu, H. Matsumoto, J. Gong, J. Zhang, W. Cai, Z. Zhang, Y. Yan, B. Liu, P. Chen, Nat. Commun. 2021, 12, 4088;
- 49bT. Ding, X. Liu, Z. Tao, T. Liu, T. Chen, W. Zhang, X. Shen, D. Liu, S. Wang, B. Pang, D. Wu, L. Cao, L. Wang, T. Liu, Y. Li, H. Sheng, M. Zhu, T. Yao, J. Am. Chem. Soc. 2021, 143, 11317;
- 49cS. Zhu, K. Wan, H. Wang, L.-J. Guo, X. Shi, Nanotechnology 2021, 32, 385404;
- 49dQ. An, J. Jiang, W. Cheng, H. Su, Y. Jiang, Q. Liu, Small Methods 2022, 6, 2200408.
- 50M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang, C. Tian, L. Wang, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 14005; Angew. Chem. 2021, 133, 14124.
- 51Y. Li, B. Wei, M. Zhu, J. Chen, Q. Jiang, B. Yang, Y. Hou, L. Lei, Z. Li, R. Zhang, Y. Lu, Adv. Mater. 2021, 33, 2102212.
Citing Literature
December 23, 2022
e202213318