Electrostatic-Induced Crystal-Rearrangement of Porous Organic Cage Membrane for CO2 Capture
Kai Qu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorJipeng Xu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorLiheng Dai
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYixing Wang
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorHongyan Cao
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816 China
Search for more papers by this authorDezhu Zhang
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816 China
Search for more papers by this authorYulin Wu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorWeiyi Xu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Dr. Kang Huang
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816 China
Search for more papers by this authorProf. Cheng Lian
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Xuhong Guo
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Wanqin Jin
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816 China
Search for more papers by this authorCorresponding Author
Prof. Zhi Xu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorKai Qu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorJipeng Xu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorLiheng Dai
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYixing Wang
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorHongyan Cao
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816 China
Search for more papers by this authorDezhu Zhang
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816 China
Search for more papers by this authorYulin Wu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorWeiyi Xu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Dr. Kang Huang
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816 China
Search for more papers by this authorProf. Cheng Lian
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Xuhong Guo
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Wanqin Jin
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816 China
Search for more papers by this authorCorresponding Author
Prof. Zhi Xu
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorGraphical Abstract
Abstract
Porous Organic Cages (POCs) with tunable tailoring chemistry properties and polymer-like processing conditions are of great potential for molecular selective membranes, but it remains challenging in the assembly of high crystalline POCs with regular nanochannels for effective molecular sieving. Here we report an electrostatic-induced crystal-rearrangement strategy for the design of a POC membrane with heterostructure. Due to electrostatic attraction, ionic liquid molecules induced cage molecules to rearrange into a sub-10 nm uniform and defect-free crystal layer, which displayed competitive CO2 separation performance. The optimized hetero-structured membrane exhibited an attractive CO2/N2 separation selectivity of over 130, which was superior to the state-of-the-art membranes, accompanied with excellent long-term and thermal shock stability. This strategy provides a new inspiration for the preparation of crystal-rearranged membranes with regular channels for gas molecule sieving.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202205481-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Debost, P. B. Klar, N. Barrier, E. B. Clatworthy, J. Grand, F. Laine, P. Brázda, L. Palatinus, N. Nesterenko, P. Boullay, S. Mintova, Angew. Chem. Int. Ed. 2020, 59, 23491–23495; Angew. Chem. 2020, 132, 23697–23701;
- 1bM. Ding, R. W. Flaig, H. L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828;
- 1cM. T. Dunstan, F. Donat, A. H. Bork, C. P. Grey, C. R. Müller, Chem. Rev. 2021, 121, 12681–12745;
- 1dZ. Shi, Y. Tao, J. Wu, C. Zhang, H. He, L. Long, Y. Lee, T. Li, Y. B. Zhang, J. Am. Chem. Soc. 2020, 142, 2750–2754;
- 1eG. Singh, J. Lee, A. Karakoti, R. Bahadur, J. Yi, D. Zhao, K. AlBahily, A. Vinu, Chem. Soc. Rev. 2020, 49, 4360–4404.
- 2
- 2aL. Dai, F. Xu, K. Huang, Y. Xia, Y. Wang, K. Qu, L. Xin, D. Zhang, Z. Xiong, Y. Wu, X. Guo, W. Jin, Z. Xu, Angew. Chem. Int. Ed. 2021, 60, 19933–19941; Angew. Chem. 2021, 133, 20086–20094;
- 2bG. Liu, W. Jin, N. Xu, Angew. Chem. Int. Ed. 2016, 55, 13384–13397; Angew. Chem. 2016, 128, 13580–13595;
- 2cL. Yang, S. Qian, X. Wang, X. Cui, B. Chen, H. Xing, Chem. Soc. Rev. 2020, 49, 5359–5406;
- 2dL. Dai, K. Huang, Y. Xia, Z. Xu, Green Energy Environ. 2021, 6, 193–211;
- 2eK. Qu, K. Huang, Z. Xu, Front. Chem. 2021, 15, 820–836;
- 2fL. Xin, D. Zhang, K. Qu, Y. Lu, Y. Wang, K. Huang, Z. Wang, W. Jin, Z. Xu, Adv. Funct. Mater. 2021, 31, 2104629.
- 3
- 3aX. Feng, Z. Zong, S. K. Elsaidi, J. B. Jasinski, R. Krishna, P. K. Thallapally, M. A. Carreon, J. Am. Chem. Soc. 2016, 138, 9791–9794;
- 3bY. Liu, M. Li, Z. Chen, Y. Cui, J. Lu, Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 7659–7663; Angew. Chem. 2021, 133, 7737–7741.
- 4
- 4aW. Fan, Y. Ying, S. B. Peh, H. Yuan, Z. Yang, Y. D. Yuan, D. Shi, X. Yu, C. Kang, D. Zhao, J. Am. Chem. Soc. 2021, 143, 17716–17723;
- 4bK. Huang, B. Wang, S. Guo, K. Li, Angew. Chem. Int. Ed. 2018, 57, 13892–13896; Angew. Chem. 2018, 130, 14088–14092;
- 4cY. Zhao, Y. Wei, L. Lyu, Q. Hou, J. Caro, H. Wang, J. Am. Chem. Soc. 2020, 142, 20915–20919.
- 5
- 5aH. Fan, A. Mundstock, A. Feldhoff, A. Knebel, J. Gu, H. Meng, J. Caro, J. Am. Chem. Soc. 2018, 140, 10094–10098;
- 5bP. Wang, Y. Peng, C. Zhu, R. Yao, H. Song, L. Kun, W. Yang, Angew. Chem. Int. Ed. 2021, 60, 19047–19052; Angew. Chem. 2021, 133, 19195–19200.
- 6Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan, Z. Jiang, Angew. Chem. Int. Ed. 2020, 59, 4365–4369; Angew. Chem. 2020, 132, 4395–4399.
- 7
- 7aY. Cheng, Y. Ying, S. Japip, S. D. Jiang, T. S. Chung, S. Zhang, D. Zhao, Adv. Mater. 2018, 30, 1802401;
- 7bK. Qu, L. Dai, Y. Xia, Y. Wang, D. Zhang, Y. Wu, Z. Yao, K. Huang, X. Guo, Z. Xu, J. Membr. Sci. 2021, 638, 119669;
- 7cC. Wu, K. Zhang, H. Wang, Y. Fan, S. Zhang, S. He, F. Wang, Y. Tao, X. Zhao, Y. B. Zhang, Y. Ma, Y. Lee, T. Li, J. Am. Chem. Soc. 2020, 142, 18503–18512;
- 7dG. Zhu, F. Zhang, M. P. Rivera, X. Hu, G. Zhang, C. W. Jones, R. P. Lively, Angew. Chem. Int. Ed. 2019, 58, 2638–2643; Angew. Chem. 2019, 131, 2664–2669.
- 8
- 8aN. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, M. D. Guiver, Nat. Mater. 2011, 10, 372–375;
- 8bQ. Song, S. Cao, R. H. Pritchard, H. Qiblawey, E. M. Terentjev, A. K. Cheetham, E. Sivaniah, J. Mater. Chem. A 2016, 4, 270–279.
- 9
- 9aT. Hasell, S. Y. Chong, K. E. Jelfs, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 588–598;
- 9bK. Jie, N. Onishi, J. A. Schott, I. Popovs, D. E. Jiang, S. Mahurin, S. Dai, Angew. Chem. Int. Ed. 2020, 59, 2268–2272; Angew. Chem. 2020, 132, 2288–2292;
- 9cM. Liu, L. Chen, S. Lewis, S. Y. Chong, M. A. Little, T. Hasell, I. M. Aldous, C. M. Brown, M. W. Smith, C. A. Morrison, L. J. Hardwick, A. I. Cooper, Nat. Commun. 2016, 7, 12750;
- 9dM. Liu, M. A. Little, K. E. Jelfs, J. T. A. Jones, M. Schmidtmann, S. Y. Chong, T. Hasell, A. I. Cooper, J. Am. Chem. Soc. 2014, 136, 7583–7586;
- 9eQ. Song, S. Jiang, T. Hasell, M. Liu, S. Sun, A. K. Cheetham, E. Sivaniah, A. I. Cooper, Adv. Mater. 2016, 28, 2629–2637.
- 10L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. M. Thomas, J. A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K. Thallapally, A. I. Cooper, Nat. Mater. 2014, 13, 954–960.
- 11S. Jiang, J. T. A. Jones, T. Hasell, C. E. Blythe, D. J. Adams, A. Trewin, A. I. Cooper, Nat. Commun. 2011, 2, 207.
- 12A. He, Z. Jiang, Y. Wu, H. Hussain, J. Rawle, M. E. Briggs, M. A. Little, A. G. Livingston, A. I. Cooper, Nat. Mater. 2022, 21, 463–470.
- 13T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner, A. I. Cooper, Nat. Mater. 2009, 8, 973–978.
- 14
- 14aD. S. Chiou, H. J. Yu, T. H. Hung, Q. Lyu, C. K. Chang, J. S. Lee, L. C. Lin, D. Y. Kang, Adv. Funct. Mater. 2021, 31, 2006924;
- 14bE. Ghasemi Estahbanati, M. Omidkhah, A. Ebadi Amooghin, ACS Appl. Mater. Interfaces 2017, 9, 10094–10105;
- 14cG. H. Hong, D. Ji, S. W. Kang, RSC Adv. 2014, 4, 16917–16919;
- 14dD. Ji, Y. S. Kang, S. W. Kang, Sci. Rep. 2015, 5, 16362;
- 14eJ. H. Lee, J. Hong, J. H. Kim, Y. S. Kang, S. W. Kang, Chem. Commun. 2012, 48, 5298–5300;
- 14fH. Li, L. Tuo, K. Yang, H. K. Jeong, Y. Dai, G. He, W. Zhao, J. Membr. Sci. 2016, 511, 130–142;
- 14gS. Meshkat, S. Kaliaguine, D. Rodrigue, Sep. Purif. Technol. 2018, 200, 177–190;
- 14hY. S. Park, C. Ha, S. W. Kang, RSC Adv. 2017, 7, 33568–33571;
- 14iJ. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li, W. Jin, J. Membr. Sci. 2016, 513, 155–165;
- 14jR. Surya Murali, A. F. Ismail, M. A. Rahman, S. Sridhar, Sep. Purif. Technol. 2014, 129, 1–8;
- 14kL. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen, C. Wang, J. Membr. Sci. 2016, 500, 66–75;
- 14lD. Zhao, J. Ren, Y. Wang, Y. Qiu, H. Li, K. Hua, X. Li, J. Ji, M. Deng, J. Membr. Sci. 2017, 521, 104–113;
- 14mW. Zhao, G. He, L. Zhang, J. Ju, H. Dou, F. Nie, C. Li, H. Liu, J. Membr. Sci. 2010, 350, 279–285.