Calix[4]pyrrole-based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water
Linhuang Xie
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorZhiye Zheng
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorQiuyuan Lin
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorHuan Zhou
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorCorresponding Author
Xiaofan Ji
School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Jonathan L. Sessler
Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, TX, 78712 USA
Search for more papers by this authorCorresponding Author
Hongyu Wang
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorLinhuang Xie
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorZhiye Zheng
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorQiuyuan Lin
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorHuan Zhou
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorCorresponding Author
Xiaofan Ji
School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Jonathan L. Sessler
Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, TX, 78712 USA
Search for more papers by this authorCorresponding Author
Hongyu Wang
Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444 P. R. China
Search for more papers by this authorGraphical Abstract
A series of calix[4]pyrrole-based crosslinked polymer networks was synthesized via Sonogashira–Hagihara polycondensation. One system, C[4]P-BTP, was found to be highly effective for iodine capture from water with an uptake capacity of 3.24 g g−1 and quick kinetics (kobs=7.814 g g−1 min−1). Flow-through adsorption experiments revealed that C[4]P-BTP was able to remove 93.2 % of iodine from an aqueous phase with a flow rate of 1 mL min−1.
Abstract
A series of calix[4]pyrrole-based crosslinked polymer networks designed for iodine capture is reported. These materials were prepared by Sonogashira coupling of α,α,α,α-tetra(4-alkynylphenyl)calix[4]pyrrole with bishalide building blocks with different electronic properties and molecular sizes. Despite their low Brunauer–Emmett–Teller surface areas, iodine vapor adsorption capacities of up to 3.38 g g−1 were seen, a finding ascribed to the presence of a large number of effective sorption sites including macrocyclic π-rich cavities, aryl units, and alkyne groups within the material. One particular system, C[4]P-BTP, was found to be highly effective at iodine capture from water (uptake capacity of 3.24 g g−1 from a concentrated aqueous KI/I2 solution at ambient temperature). Fast capture kinetics (kobs=7.814 g g−1 min−1) were seen. Flow-through adsorption experiments revealed that C[4]P-BTP is able to remove 93.2 % of iodine from an aqueous source phase at a flow rate of 1 mL min−1.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113724-sup-0001-cif.zip510.5 KB | Supporting Information |
anie202113724-sup-0001-misc_information.pdf6.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548–568;
- 1bW. Ji, T.-X. Wang, X. Ding, S. Lei, B.-H. Han, Coord. Chem. Rev. 2021, 439, 213875–213903;
- 1cY. G. Zhang, S. N. Riduan, Chem. Soc. Rev. 2012, 41, 2083–2094.
- 2
- 2aA. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, W. R. Dichtel, Nature 2016, 529, 190–194;
- 2bL. Xiao, Y. Ling, A. Alsbaiee, C. Li, D. E. Helbling, W. R. Dichtel, J. Am. Chem. Soc. 2017, 139, 7689–7692;
- 2cX. Qin, L. Bai, Y. Tan, L. Li, F. Song, Y. Wang, Chem. Eng. J. 2019, 372, 1007–1018.
- 3
- 3aB. Garai, D. Shetty, T. Skorjanc, F. Gandara, N. Naleem, S. Varghese, S. K. Sharma, M. Baias, R. Jagannathan, M. A. Olson, S. Kirmizialtin, A. Trabolsi, J. Am. Chem. Soc. 2021, 143, 3407–3415;
- 3bD. Shetty, J. Raya, D. S. Han, Z. Asfari, J.-C. Olsen, A. Trabolsi, Chem. Mater. 2017, 29, 8968–8972.
- 4
- 4aD. Dai, J. Yang, Y. C. Zou, J. R. Wu, L. L. Tan, Y. Wang, B. Li, T. Lu, B. Wang, Y. W. Yang, Angew. Chem. Int. Ed. 2021, 60, 8967–8975; Angew. Chem. 2021, 133, 9049–9057;
- 4bS. Lan, S. Zhan, J. Ding, J. Ma, D. Ma, J. Mater. Chem. A 2017, 5, 2514–2518;
- 4cB. Shi, H. Guan, L. Shangguan, H. Wang, D. Xia, X. Kong, F. Huang, J. Mater. Chem. A 2017, 5, 24217–24222.
- 5
- 5aK. Su, W. Wang, B. Li, D. Yuan, ACS Sustainable Chem. Eng. 2018, 6, 17402–17409;
- 5bL. P. Skala, A. Yang, M. J. Klemes, L. Xiao, W. R. Dichtel, J. Am. Chem. Soc. 2019, 141, 13315–13319.
- 6
- 6aX. Wang, L. Xie, K. Lin, W. Ma, T. Zhao, X. Ji, M. Alyami, N. M. Khashab, H. Wang, J. L. Sessler, Angew. Chem. Int. Ed. 2021, 60, 7188–7196; Angew. Chem. 2021, 133, 7264–7272;
- 6bJ. Lee, N. W. Waggoner, L. Polanco, G. R. You, V. M. Lynch, S. K. Kim, S. M. Humphrey, J. L. Sessler, Chem. Commun. 2016, 52, 8514–8517.
- 7
- 7aX. Ji, H. Wang, H. Wang, T. Zhao, Z. A. Page, N. M. Khashab, J. L. Sessler, Angew. Chem. Int. Ed. 2020, 59, 23402–23412; Angew. Chem. 2020, 132, 23608–23618;
- 7bS. N. Talapaneni, D. Kim, G. Barin, O. Je, S. H. Buyukcakir, A. Coskun, Chem. Mater. 2016, 28, 4460–4466;
- 7cT. Skorjanc, D. Shetty, A. Trabolsi, Chem 2021, 7, 882–918.
- 8
- 8aA. Saiz-Lopez, J. M. Plane, A. R. Baker, L. J. Carpenter, R. von Glasow, J. C. Martin, G. McFiggans, R. W. Saunders, Chem. Rev. 2012, 112, 1773–1804;
- 8bM. I. Ojovan, W. E. Lee, An Introduction to Nuclear Waste Immobilisation, Elsevier, Amsterdam, 2005.
10.1016/B978-008044462-8/50022-3 Google Scholar
- 9
- 9aW. Xie, D. Cui, S.-R. Zhang, Y.-H. Xu, D.-L. Jiang, Mater. Horiz. 2019, 6, 1571–1595;
- 9bC.-H. Liu, W.-H. Fang, Y. Y. Sun, S. Y. Yao, S.-T. Wang, D. F. Lu, J. Zhang, Angew. Chem. Int. Ed. 2021, 60, 21426–21433; Angew. Chem. 2021, 133, 21596–21603.
- 10
- 10aG. Steinhauser, A. Brandl, T. E. Johnson, Sci. Total Environ. 2014, 470–471, 800–817;
- 10bM. P. Little, R. Wakeford, A. Bouville, S. L. Simon, Proc. Natl. Acad. Sci. USA 2016, 113, 3720–3721;
- 10cS. Xu, S. P. Freeman, X. Hou, A. Watanabe, K. Yamaguchi, L. Zhang, Environ. Sci. Technol. 2013, 47, 10851–10859.
- 11S. B. Lee, S. W. Lee, S. Y. Jeong, G. Yoon, S. J. Cho, S. K. Kim, I. K. Lee, B. C. Ahn, J. Lee, Y. H. Jeon, ACS Appl. Mater. Interfaces 2017, 9, 8480–8489.
- 12G.-Q. Wang, J.-F. Huang, X.-F. Huang, S.-Q. Deng, S.-R. Zheng, S.-L. Cai, J. Fan, W.-G. Zhang, Inorg. Chem. Front. 2021, 8, 1083–1092.
- 13G. Qu, Y. Han, J. Qi, X. Xing, M. Hou, Y. Sun, X. Wang, G. Sun, RSC Adv. 2021, 11, 5268–5275.
- 14M. Alsalbokh, N. Fakeri, S. Lawson, A. A. Rownaghi, F. Rezaei, Chem. Eng. J. 2021, 415, 128968–128975.
- 15
- 15aK. Jie, Y. Zhou, E. Li, Z. Li, R. Zhao, F. Huang, J. Am. Chem. Soc. 2017, 139, 15320–15323;
- 15bB. Li, B. Wang, X. Huang, L. Dai, L. Cui, J. Li, X. Jia, C. Li, Angew. Chem. Int. Ed. 2019, 58, 3885–3889; Angew. Chem. 2019, 131, 3925–3929.
- 16Y. Lin, X. Jiang, S. T. Kim, S. B. Alahakoon, X. Hou, Z. Zhang, C. M. Thompson, R. A. Smaldone, C. Ke, J. Am. Chem. Soc. 2017, 139, 7172–7175.
- 17D. An, L. Li, Z. Zhang, A. M. Asiri, K. A. Alamry, X. Zhang, Mater. Chem. Phys. 2020, 239, 122328–122333.
- 18
- 18aD. S. Kim, J. L. Sessler, Chem. Soc. Rev. 2015, 44, 532–546;
- 18bS. K. Ko, S. K. Kim, A. Share, V. M. Lynch, J. Park, W. Namkung, W. Van Rossom, N. Busschaert, P. A. Gale, J. L. Sessler, I. Shin, Nat. Chem. 2014, 6, 885–892.
- 19M. P. Wintergerst, T. G. Levitskaia, B. A. Moyer, J. L. Sessler, L. H. Delmau, J. Am. Chem. Soc. 2008, 130, 4129–4139.
- 20A. Aydogan, D. J. Coady, V. M. Lynch, A. Akar, M. Marquez, C. W. Bielawski, J. L. Sessler, Chem. Commun. 2008, 1455–1457.
- 21D. Shetty, I. Jahovic, J. Raya, F. Ravaux, M. Jouiad, J.-C. Olsen, A. Trabolsi, J. Mater. Chem. A 2017, 5, 62–66.
- 22A. Galán, G. Aragay, P. Ballester, Chem. Sci. 2016, 7, 5976–5982.
- 23
- 23aP. Wang, Q. Xu, Z. Li, W. Jiang, Q. Jiang, D. Jiang, Adv. Mater. 2018, 30, 1801991;
- 23bX. Guo, Y. Tian, M. Zhang, Y. Li, R. Wen, X. Li, X. Li, Y. Xue, L. Ma, C. Xia, S. Li, Chem. Mater. 2018, 30, 2299–2308;
- 23cZ. J. Yin, S. Q. Xu, T. G. Zhan, Q. Y. Qi, Z. Q. Wu, X. Zhao, Chem. Commun. 2017, 53, 7266–7269.
- 24Y. Zhu, Y.-J. Ji, D.-G. Wang, Y. Zhang, H. Tang, X.-R. Jia, M. Song, G. Yu, G.-C. Kuang, J. Mater. Chem. A 2017, 5, 6622–6629.
- 25Y. Liao, J. Weber, B. M. Mills, Z. Ren, C. F. J. Faul, Macromolecules 2016, 49, 6322–6333.
- 26J. Jeromenok, J. Weber, Langmuir 2013, 29, 12982–12989.
- 27
- 27aT. Geng, Z. Zhu, W. Zhang, Y. Wang, J. Mater. Chem. A 2017, 5, 7612–7617;
- 27bY. F. Chen, H. X. Sun, R. X. Yang, T. T. Wang, C. J. Pei, Z. T. Xiang, Z. Q. Zhu, W. D. Liang, A. Li, W. Q. Deng, J. Mater. Chem. A 2015, 3, 87–91.
- 28Y. S. Ho, G. McKay, Process Biochem. 1999, 34, 451–465.
- 29
- 29aY. Xia, J. M. Wiesinger, A. G. MacDiarmid, A. J. Epstein, Chem. Mater. 1995, 7, 443–445;
- 29bD. M. Tigelaar, W. Lee, K. A. Bates, A. Saprigin, V. N. Prigodin, X. L. Cao, L. A. Nafie, M. S. Platz, A. J. Epstein, Chem. Mater. 2002, 14, 1430–1438.