Rigid Bridge-Confined Double-Decker Platinum(II) Complexes Towards High-Performance Red and Near-Infrared Electroluminescence
Dr. Youming Zhang
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jingsheng Miao
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorJinfan Xiong
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Kai Li
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chuluo Yang
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
Search for more papers by this authorDr. Youming Zhang
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jingsheng Miao
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorJinfan Xiong
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Kai Li
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chuluo Yang
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P.R. China
Search for more papers by this authorGraphical Abstract
Strong intramolecular Pt⋅⋅⋅Pt/π–π interactions confined by rigid bridges lead to fast radiative decay and high-efficiency red and near-infrared (NIR) phosphorescence from triplet metal-metal-to-ligand charge transfer (3MMLCT) excited states. Together with short emission lifetimes, high-performance red and NIR organic light-emitting diodes (OLEDs) have been demonstrated.
Abstract
A molecular design to high-performance red and near-infrared (NIR) organic light-emitting diodes (OLEDs) emitters remains demanding. Herein a series of dinuclear platinum(II) complexes featuring strong intramolecular Pt⋅⋅⋅Pt and π–π interactions has been developed by using N-deprotonated α-carboline as a bridging ligand. The complexes in doped thin films exhibit efficient red to NIR emission from short-lived (τ=0.9–2.1 μs) triplet metal-metal-to-ligand charge transfer (3MMLCT) excited states. Red OLEDs demonstrate high maximum external quantum efficiencies (EQEs) of up to 23.3 % among the best PtII-complex-doped devices. The maximum EQE of 15.0 % and radiance of 285 W sr−1 m−2 for NIR OLEDs (λEL=725 nm) are unprecedented for devices based on discrete molecular emitters. Both red and NIR devices show very small efficiency roll-off at high brightness. Appealing operational lifetimes have also been revealed for the devices. This work sheds light on the potential of intramolecular metallophilicity for long-wavelength molecular emitters and electroluminescence.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113718-sup-0001-cif.zip523.7 KB | Supporting Information |
anie202113718-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Vasilopoulou, A. Fakharuddin, F. P. García de Arquer, D. G. Georgiadou, H. Kim, A. R. bin Mohd Yusoff, F. Gao, M. K. Nazeeruddin, H. J. Bolink, E. H. Sargent, Nat. Photonics 2021, 15, 656–669;
- 1bS. Yoon, T. S. Teets, Chem. Commun. 2021, 57, 1975–1988;
- 1cA. Zampetti, A. Minotto, F. Cacialli, Adv. Funct. Mater. 2019, 29, 1807623;
- 1dY. Zhang, Y. Wang, J. Song, J. Qu, B. Li, W. Zhu, W.-Y. Wong, Adv. Opt. Mater. 2018, 6, 1800466.
- 2
- 2aR. Englman, J. Jortner, Mol. Phys. 1970, 18, 145–164;
- 2bG. H. Allen, R. P. White, D. P. Rillema, T. J. Meyer, J. Am. Chem. Soc. 1984, 106, 2613–2620.
- 3
- 3aZ.-Q. Zhu, K. Klimes, S. Holloway, J. Li, Adv. Mater. 2017, 29, 1605002;
- 3bT. Fleetham, G. Li, J. Li, ACS Appl. Mater. Interfaces 2015, 7, 16240–16246;
- 3cL. Zhou, C.-L. Kwong, C.-C. Kwok, G. Cheng, H. Zhang, C.-M. Che, Chem. Asian J. 2014, 9, 2984–2994;
- 3dH. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, H. Fujikake, Adv. Mater. 2012, 24, 5099–5103;
- 3eC.-M. Che, C.-C. Kwok, S.-W. Lai, A. F. Rausch, W. J. Finkenzeller, N. Zhu, H. Yersin, Chem. Eur. J. 2010, 16, 233–247.
- 4
- 4aK. Li, G. S. M. Tong, Q. Wan, G. Cheng, W.-Y. Tong, W.-H. Ang, W.-L. Kwong, C.-M. Che, Chem. Sci. 2016, 7, 1653–1673;
- 4bT. Fleetham, G. Li, J. Li, Adv. Mater. 2017, 29, 1601861.
- 5
- 5aJ.-X. Chen, Y.-F. Xiao, K. Wang, D. Sun, X.-C. Fan, X. Zhang, M. Zhang, Y.-Z. Shi, J. Yu, F.-X. Geng, C.-S. Lee, X.-H. Zhang, Angew. Chem. Int. Ed. 2021, 60, 2478–2484; Angew. Chem. 2021, 133, 2508–2514;
- 5bY.-Y. Wang, K.-N. Tong, K. Zhang, C.-H. Lu, X. Chen, J.-X. Liang, C.-K. Wang, C.-C. Wu, M.-K. Fung, J. Fan, Mater. Horiz. 2021, 8, 1297–1303;
- 5cJ.-X. Chen, W.-W. Tao, W.-C. Chen, Y.-F. Xiao, K. Wang, C. Cao, J. Yu, S. Li, F.-X. Geng, C. Adachi, C.-S. Lee, X.-H. Zhang, Angew. Chem. Int. Ed. 2019, 58, 14660–14665; Angew. Chem. 2019, 131, 14802–14807;
- 5dY.-L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hänisch, S. Reineke, J. Fan, L.-S. Liao, Adv. Mater. 2019, 31, 1902368;
- 5eY. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 20498–20503; Angew. Chem. 2021, 133, 20661–20666;
- 5fZ. Cai, X. Wu, H. Liu, J. Guo, D. Yang, D. Ma, Z. Zhao, B.-Z. Tang, Angew. Chem. Int. Ed. 2021, 60, 23635–23640; Angew. Chem. 2021, 133, 23827–23832.
- 6
- 6aZ. Chen, H. Zhang, D. Wen, W. Wu, Q. Zeng, S. Chen, W.-Y. Wong, Chem. Sci. 2020, 11, 2342–2349;
- 6bC. You, D. Liu, J. Yu, H. Tan, M. Zhu, B. Zhang, Y. Liu, Y. Wang, W. Zhu, Adv. Opt. Mater. 2020, 8, 2000154;
- 6cS. Kesarkar, W. Mróz, M. Penconi, M. Pasini, S. Destri, M. Cazzaniga, D. Ceresoli, P. R. Mussini, C. Baldoli, U. Giovanella, A. Bossi, Angew. Chem. Int. Ed. 2016, 55, 2714–2718; Angew. Chem. 2016, 128, 2764–2768;
- 6dC. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, J. Brown, Angew. Chem. Int. Ed. 2007, 46, 1109–1112; Angew. Chem. 2007, 119, 1127–1130.
- 7
- 7aU. Balijapalli, R. Nagata, N. Yamada, H. Nakanotani, M. Tanaka, A. D'Aléo, V. Placide, M. Mamada, Y. Tsuchiya, C. Adachi, Angew. Chem. Int. Ed. 2021, 60, 8477–8482; Angew. Chem. 2021, 133, 8558–8563;
- 7bJ. Xue, Q. Liang, R. Wang, J. Hou, W. Li, Q. Peng, Z. Shuai, J. Qiao, Adv. Mater. 2019, 31, 1808242;
- 7cD. G. Congrave, B. H. Drummond, P. J. Conaghan, H. Francis, S. T. E. Jones, C. P. Grey, N. C. Greenham, D. Credgington, H. Bronstein, J. Am. Chem. Soc. 2019, 141, 18390–18394.
- 8S. K. Jeon, H. L. Lee, K. S. Yook, J. Y. Lee, Adv. Mater. 2019, 31, 1803524.
- 9
- 9aM. Yoshida, M. Kato, Coord. Chem. Rev. 2018, 355, 101–115;
- 9bH. B. Gray, S. Záliš, A. Vlček, Coord. Chem. Rev. 2017, 345, 297–317;
- 9cV. M. Miskowski, V. H. Houlding, Inorg. Chem. 1991, 30, 4446–4452.
- 10
- 10aX.-Q. Zhou, M. Mytiliniou, J. Hilgendorf, Y. Zeng, P. Papadopoulou, Y. Shao, M. P. Dominguez, L. Zhang, M. B. S. Hesselberth, E. Bos, M. A. Siegler, F. Buda, A. M. Brouwer, A. Kros, R. I. Koning, D. Heinrich, S. Bonnet, Adv. Mater. 2021, 33, 2008613;
- 10bQ. Wan, W. P. To, C. Yang, C.-M. Che, Angew. Chem. Int. Ed. 2018, 57, 3089–3093; Angew. Chem. 2018, 130, 3143–3147;
- 10cY. Chen, K. Li, H. O. Lloyd, W. Lu, S. S.-Y. Chui, C.-M. Che, Angew. Chem. Int. Ed. 2010, 49, 9968–9971; Angew. Chem. 2010, 122, 10164–10167;
- 10dY. Chen, K. Li, W. Lu, S. S.-Y. Chui, C.-W. Ma, C.-M. Che, Angew. Chem. Int. Ed. 2009, 48, 9909–9913; Angew. Chem. 2009, 121, 10093–10097;
- 10eV. W.-W. Yam, K. M.-C. Wong, N. Zhu, J. Am. Chem. Soc. 2002, 124, 6506–6507;
- 10fV. W.-W. Yam, V. K.-M. Au, S. Y.-L. Leung, Chem. Rev. 2015, 115, 7589–7728.
- 11
- 11aQ. Wang, I. W. H. Oswald, X. Yang, G. Zhou, H. Jia, Q. Qiao, Y. Chen, J. Hoshikawa-Halbert, B. E. Gnade, Adv. Mater. 2014, 26, 8107–8113;
- 11bK.-H. Kim, J.-L. Liao, S. W. Lee, B. Sim, C.-K. Moon, G.-H. Lee, H. J. Kim, Y. Chi, J.-J. Kim, Adv. Mater. 2016, 28, 2526–2532;
- 11cK. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nat. Photonics 2017, 11, 63–68;
- 11dX. Yang, H. Guo, X. Xu, Y. Sun, G. Zhou, W. Ma, Z. Wu, Adv. Sci. 2019, 6, 1801930;
- 11eW.-C. Chen, C. Sukpattanacharoen, W.-H. Chan, C.-C. Huang, H.-F. Hsu, D. Shen, W.-Y. Hung, N. Kungwan, D. Escudero, C.-S. Lee, Y. Chi, Adv. Funct. Mater. 2020, 30, 2002494;
- 11fH. T. Kidanu, J. H. Lee, C.-T. Chen, Mater. Adv. 2021, 2, 3589–3599;
- 11gG. Cheng, Q. Wan, W.-H. Ang, C.-L. Kwong, W.-P. To, P.-K. Chow, C.-C. Kwok, C.-M. Che, Adv. Opt. Mater. 2019, 7, 1801452;
- 11hY.-C. Wei, S. F. Wang, Y. Hu, L.-S. Liao, D.-G. Chen, K.-H. Chang, C.-W. Wang, S.-H. Liu, W.-H. Chan, J.-L. Liao, W.-Y. Hung, T.-H. Wang, P.-T. Chen, H.-F. Hsu, Y. Chi, P.-T. Chou, Nat. Photonics 2020, 14, 570–577.
- 12
- 12aS. F. Wang, L.-W. Fu, Y.-C. Wei, S.-H. Liu, J.-A. Lin, G.-H. Lee, P.-T. Chou, J.-Z. Huang, C.-I. Wu, Y. Yuan, C.-S. Lee, Y. Chi, Inorg. Chem. 2019, 58, 13892–13901;
- 12bW. Xiong, F. Meng, C. You, P. Wang, J. Yu, X. Wu, Y. Pei, W. Zhu, Y. Wang, S. Su, J. Mater. Chem. C 2019, 7, 630–638;
- 12cN. Su, F. Meng, P. Wang, X. Liu, M. Zhu, W. Zhu, S. Su, J. Yu, Dyes Pigm. 2017, 138, 162–168;
- 12dW. Xiong, F. Meng, H. Tan, Y. Wang, P. Wang, Y. Zhang, Q. Tao, S. Su, W. Zhu, J. Mater. Chem. C 2016, 4, 6007–6015;
- 12eW. Lu, M. C. W. Chan, N. Y. Zhu, C.-M. Che, C. N. Li, Z. Hui, J. Am. Chem. Soc. 2004, 126, 7639–7651.
- 13J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2002, 41, 3055–3066.
- 14
- 14aK. Tamami, O. Ai, K. Masako, Chem. Lett. 2004, 33, 1386–1387;
- 14bX. Wu, Y. Liu, Y. Wang, L. Wang, H. Tan, M. Zhu, W. Zhu, Y. Cao, Org. Electron. 2012, 13, 932–937;
- 14cV. Sicilia, J. Forniés, J. M. Casas, A. Martín, J. A. López, C. Larraz, P. Borja, C. Ovejero, D. Tordera, H. Bolink, Inorg. Chem. 2012, 51, 3427–3435;
- 14dM. Chaaban, Y.-C. Chi, M. Worku, C. Zhou, H. Lin, S. Lee, A. Ben-Akacha, X. Lin, C. Huang, B. Ma, Inorg. Chem. 2020, 59, 13109–13116;
- 14eA. Chakraborty, J. E. Yarnell, R. D. Sommer, S. Roy, F. N. Castellano, Inorg. Chem. 2018, 57, 1298–1310.
- 15
- 15aP. Pander, R. Daniels, A. V. Zaytsev, A. Horn, A. Sil, T. J. Penfold, J. A. G. Williams, V. N. Kozhevnikov, F. B. Dias, Chem. Sci. 2021, 12, 6172–6180;
- 15bF. Wei, S.-L. Lai, S. Zhao, M. Ng, M.-Y. Chan, V. W.-W. Yam, K. M.-C. Wong, J. Am. Chem. Soc. 2019, 141, 12863–12871;
- 15cC.-H. Chien, F.-M. Hsu, C.-F. Shu, Y. Chi, Org. Electron. 2009, 10, 871–876.
- 16Y. Yuan, J.-L. Liao, S.-F. Ni, A. K.-Y. Jen, C.-S. Lee, Y. Chi, Adv. Funct. Mater. 2020, 30, 1906738.
- 17
- 17aD. Zhou, W.-P. To, G. S. M. Tong, G. Cheng, L. Du, D. L. Phillips, C.-M. Che, Angew. Chem. Int. Ed. 2020, 59, 6375–6382; Angew. Chem. 2020, 132, 6437–6444;
- 17bL.-K. Li, M.-C. Tang, S.-L. Lai, M. Ng, W.-K. Kwok, M.-Y. Chan, V. W.-W. Yam, Nat. Photonics 2019, 13, 185–191;
- 17cS. Kothavale, W. J. Chung, J. Y. Lee, J. Mater. Chem. C 2021, 9, 528–536;
- 17dL.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, R. H. Friend, Nat. Photonics 2020, 14, 636–642.