Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols
Dr. Mari Vellakkaran
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS)
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorTaehwan Kim
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS)
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Sungwoo Hong
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS)
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorDr. Mari Vellakkaran
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS)
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorTaehwan Kim
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS)
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Sungwoo Hong
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS)
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorDedicated to Professor Jaiwook Park on the occasion of his retirement
Graphical Abstract
Visible-light-induced β-carbonyl alkylation of pyridines was developed by employing various cyclopropanols and N-amidopyridinium salts under mild conditions. This method provides an effective tool for the synthesis of valuable β-pyridyl-functionalized carbonyl frameworks with excellent C4 selectivity and the late-stage functionalization of complex and medicinally relevant molecules.
Abstract
The site-selective C−H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O−H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202113658-sup-0001-misc_information.pdf8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Murakami, S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117, 9302;
- 1bY. Nakao, Synthesis 2011, 3209;
- 1cM. A. J. Duncton, MedChemComm 2011, 2, 1135;
- 1dI. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel, P. S. Baran, J. Am. Chem. Soc. 2010, 132, 13194.
- 2
- 2aM. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C. MacMillan, Science 2013, 339, 1593;
- 2bE. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257;
- 2cR. D. Taylor, M. MacCoss, A. D. Lawson, J. Med. Chem. 2014, 57, 5845;
- 2dZ. Ma, D. C.-H. Lin, R. Sharma, J. Liu, L. Zhu, A.-R. Li, T. Kohn, Y. Wang, J. Liu, M. D. Bartberger, J. C. Medina, R. Zhuang, F. Li, J. Zhang, J. Luo, S. Wong, G. R. Tonn, J. B. Houze, Bioorg. Med. Chem. Lett. 2016, 26, 15;
- 2eC. Campagnuolo, C. Fattorusso, E. Fattorusso, A. Ianaro, B. Pisano, O. Taglialatela-Scafati, Org. Lett. 2003, 5, 673;
- 2fY. Yuan, O. Elbegdorj, J. Chen, S. K. Akubathini, I. O. Beletskaya, D. E. Selley, Y. Zhang, Bioorg. Med. Chem. Lett. 2011, 21, 5625.
- 3Recent review on the use of cyclopropanols:
- 3aT. R. McDonald, L. R. Mills, M. S. West, S. A. L. Rousseaux, Chem. Rev. 2021, 121, 3;
- 3bX. Wu, C. Zhu, Chem. Rec. 2018, 18, 587;
- 3cG. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404;
- 3dA. Nikolaev, A. Orellana, Synthesis 2016, 48, 1741;
- 3eO. G. Kulinkovich, Chem. Rev. 2003, 103, 2597.
- 4For the recent examples of metal-catalyzed homoenolates, see:
- 4aJ. Yang, Y. Shen, Y. J. Lim, N. Yoshikai, Chem. Sci. 2018, 9, 6928;
- 4bH. Liu, Z. Fu, S. Gao, Y. Huang, A. Lin, H. Yao, Adv. Synth. Catal. 2018, 360, 3171;
- 4cI. Novikau, A. Hurski, Tetrahedron 2018, 74, 1078;
- 4dL. R. Mills, L. M. Barrera Arbelaez, S. A. L. Rousseaux, J. Am. Chem. Soc. 2017, 139, 11357;
- 4eN. Tumma, E. Gyanchander, J. K. Cha, J. Org. Chem. 2017, 82, 4379;
- 4fM. V. Barysevich, V. V. Kazlova, A. G. Kukel, A. I. Liubina, A. L. Hurski, V. N. Zhabinskii, V. A. Khripach, Chem. Commun. 2018, 54, 2800.
- 5For the recent examples of metal-catalyzed ring-opening of cyclopropanols, see:
- 5aQ. Tan, Z. Yang, D. Jiang, Y. Cheng, J. Yang, S. Xi, M. Zhang, Angew. Chem. Int. Ed. 2019, 58, 6420; Angew. Chem. 2019, 131, 6486;
- 5bY.-H. Zhang, W.-W. Zhang, Z.-Y. Zhang, K. Zhao, T.-P. Loh, Org. Lett. 2019, 21, 5101;
- 5cB. D. W. Allen, M. D. Hareram, A. C. Seastram, T. McBride, T. Wirth, D. L. Browne, L. C. Morrill, Org. Lett. 2019, 21, 9241;
- 5dA. Nikolaev, C. Y. Legault, M. Zhang, A. Orellana, Org. Lett. 2018, 20, 796;
- 5eA. Reding, P. G. Jones, D. B. Werz, Org. Lett. 2018, 20, 7266;
- 5fY. Deng, N. I. Kauser, S. M. Islam, J. T. Mohr, Eur. J. Org. Chem. 2017, 5872.
- 6For the recent publications on radical ring-opening of cyclopropanols, see:
- 6aH. Zhao, X. Fan, J. Yu, C. Zhu, J. Am. Chem. Soc. 2015, 137, 3490;
- 6bX. Fan, H. Zhao, J. Yu, X. Bao, C. Zhu, Org. Chem. Front. 2016, 3, 227;
- 6cN. Ishida, S. Okumura, Y. Nakanishi, M. Murakami, Chem. Lett. 2015, 44, 821;
- 6dY. A. Konik, G. Z. Elek, S. Kaabel, I. Järving, M. Lopp, D. G. Kananovich, Org. Biomol. Chem. 2017, 15, 8334;
- 6eG. Z. Elek, V. Borovkov, M. Lopp, D. G. Kananovich, Org. Lett. 2017, 19, 3544;
- 6fC. Che, Z. Qian, M. Wu, Y. Zhao, G. Zhu, J. Org. Chem. 2018, 83, 5665;
- 6gZ. Ye, X. Cai, J. Li, M. Dai, ACS Catal. 2018, 8, 5907;
- 6hG. Z. Elek, K. Koppel, D. M. Zubrytski, N. Konrad, I. Järving, M. Lopp, D. G. Kananovich, Org. Lett. 2019, 21, 8473;
- 6iJ. Sheng, J. Liu, L. Chen, L. Zhang, L. Zheng, X. Wei, Org. Chem. Front. 2019, 6, 1471;
- 6jJ. Liu, E. Xu, J. Jiang, Z. Huang, L. Zheng, Z.-Q. Liu, Chem. Commun. 2020, 56, 2202.
- 7For the recent publications on visible-light mediated radical ring-opening of substituted cyclopropanols, see:
- 7aK. Jia, F. Zhang, H. Huang, Y. Chen, J. Am. Chem. Soc. 2016, 138, 1514;
- 7bL. Woźniak, G. Magagnano, P. Melchiorre, Angew. Chem. Int. Ed. 2018, 57, 1068; Angew. Chem. 2018, 130, 1080;
- 7cL. Huang, T. Ji, M. Rueping, J. Am. Chem. Soc. 2020, 142, 3532;
- 7dM. Ji, Z. Wu, C. Zhu, Chem. Commun. 2019, 55, 2368; S. Bloom, D. D. Bume, C. R. Pitts, T. Lectka, Chem. Eur. J. 2015, 21, 8060;
- 7eL. Cardinale, M. Neumeier, M. Majek, A. J. V. Wangelin, Org. Lett. 2020, 22, 7219.
- 8
- 8aD. D. Bume, C. R. Pitts, T. Lectka, Eur. J. Org. Chem. 2016, 26;
- 8bM. Murakami, N. Ishida, Chem. Lett. 2017, 46, 1692;
- 8cS. C. Lu, H.-S. Li, S. Xua, D. Gui-Yun, Org. Biomol. Chem. 2017, 15, 324;
- 8dQ. Liu, Q. Wang, G. Xie, Z. Fang, S. Ding, X. Wang, Eur. J. Org. Chem. 2020, 2600.
- 9For selected examples of C2-selective alkylation of pyridine N-oxides and pyridinium salts, see:
- 9aW. Jo, J. Kim, S. Choi, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55, 9690; Angew. Chem. 2016, 128, 9842;
- 9bC. Hwang, W. Jo, S. H. Cho, Chem. Commun. 2017, 53, 7573;
- 9cW. Zhou, T. Miura, M. Murakami, Angew. Chem. Int. Ed. 2018, 57, 5139; Angew. Chem. 2018, 130, 5233;
- 9dJ.-h. Xu, W.-b. Wu, J. Wu, Org. Lett. 2019, 21, 5321;
- 9eY. Moon, W. Lee, S. Hong, J. Am. Chem. Soc. 2020, 142, 12420;
- 9fJ. Jeon, Y. He, S. Shin, S. Hong, Angew. Chem. Int. Ed. 2020, 59, 281; Angew. Chem. 2020, 132, 287;
- 9gH. Im, W. Choi, S. Hong, Angew. Chem. Int. Ed. 2020, 59, 17511; Angew. Chem. 2020, 132, 17664.
- 10For selected examples of C4-selective alkylation of pyridinium salts, see:
- 10aY. Moon, B. Park, I. Kim, G. Kang, S. Shin, D. Kang, M.-H. Baik, S. Hong, Nat. Commun. 2019, 10, 4117;
- 10bK. Lee, S. Lee, N. Kim, S. Kim, S. Hong, Angew. Chem. Int. Ed. 2020, 59, 13379; Angew. Chem. 2020, 132, 13481;
- 10cN. Kim, C. Lee, T. Kim, S. Hong, Org. Lett. 2019, 21, 9719;
- 10dW. Lee, S. Jung, M. Kim, S. Hong, J. Am. Chem. Soc. 2021, 143, 3003;
- 10eM. Kim, E. You, S. Park, S. Hong, Chem. Sci. 2021, 12, 6629;
- 10fJ. Choi, G. Laudadio, E. Godineau, P. S. Baran, J. Am. Chem. Soc. 2021, 143, 11927.
- 11X.-Y. Yu, J.-R. Chen, W.-J. Xiao, Chem. Rev. 2021, 121, 506.
- 12J.-L. Zhan, M.-W. Wu, D. Wei, B.-Y. Wei, Y. Jiang, W. Yu, B. Han, ACS Catal. 2019, 9, 4179.
- 13
- 13aD. Šakić, H. Zipse, Adv. Synth. Catal. 2016, 358, 3983;
- 13bZ.-Y. Ma, M. Li, L.-N. Guo, L. Liu, D. Wang, X.-H. Duan, Org. Lett. 2021, 23, 474;
- 13cH. Tanaka, K. Sakai, A. Kawamura, K. Oisaki, M. Kanai, Chem. Commun. 2018, 54, 3215.
- 14For selected reviews of the generation of an amidyl radical, see:
- 14aJ. Davies, S. P. Morcillo, J. J. Douglas, D. Leonori, Chem. Eur. J. 2018, 24, 12154;
- 14bJ.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2016, 45, 2044;
- 14cT. Xiong, Q. Zhang, Chem. Soc. Rev. 2016, 45, 3069;
- 14dL. Q. Nguyen, R. R. Knowles, ACS Catal. 2016, 6, 2894;
- 14eE. C. Gentry, R. R. Knowles, Acc. Chem. Res. 2016, 49, 1546;
- 14fX.-T. Yu, Q.-Q. Zhao, J. Chen, W.-J. Xiao, J.-R. Chen, Acc. Chem. Res. 2020, 53, 1066.
- 15For selected reviews of EDA complexes, see:
- 15aC. G. S. Lima, T. D. Lima, M. Duarte, I. D. Jurberg, M. W. Paixão, ACS Catal. 2016, 6, 1389;
- 15bA. Postigo, Eur. J. Org. Chem. 2018, 6391;
- 15cG. E. M. Crisenza, D. Mazzarella, P. Melchiorre, J. Am. Chem. Soc. 2020, 142, 5461.
- 16For selected examples using EDA complexes with pyridinium salts, see:
- 16aV. Quint, F. Morlet-Savary, J.-F. Lohier, J. Lalevée, A.-C. Gaumont, S. Lakhdar, J. Am. Chem. Soc. 2016, 138, 7436;
- 16bV. Quint, N. Chouchène, M. Askri, J. Lalevée, A.-C. Gaumont, S. Lakhdar, Org. Chem. Front. 2019, 6, 41;
- 16cS. Jung, S. Shin, S. Park, S. Hong, J. Am. Chem. Soc. 2020, 142, 11370;
- 16dI. Kim, S. Park, S. Hong, Org. Lett. 2020, 22, 8730;
- 16eS. Shin, S. Lee, W. Choi, N. Kim, S. Hong, Angew. Chem. Int. Ed. 2021, 60, 7873; Angew. Chem. 2021, 133, 7952.
- 17
- 17aI. Ryu, A. Tani, T. Fukuyama, D. Ravelli, S. Montanaro, M. Fagnoni, Org. Lett. 2013, 15, 2554;
- 17bF. Bonassi, D. Ravelli, S. Protti, M. Fagnoni, Adv. Synth. Catal. 2015, 357, 3687;
- 17cY. Amaoka, M. Nagatomo, M. Watanabe, K. Tao, S. Kamijo, M. Inoue, Chem. Sci. 2014, 5, 4339;
- 17dS. Paul, J. Guin, Green Chem. 2017, 19, 2530.
- 18
- 18aE. Nakamura, S. Aoki, K. Sekiya, H. Oshino, I. Kuwajima, J. Am. Chem. Soc. 1987, 109, 8056;
- 18bA. C. Spivey, L. Shukla, J. F. Hayler, Org. Lett. 2007, 9, 891;
- 18cS. Zhang, L. Li, X. Li, J. Zhang, K. Xu, G. Li, M. Findlater, Org. Lett. 2020, 22, 3570;
- 18dS. Menghin, H. H. Pertz, K. Kramer, R. Seifert, W. Schunack, S. Elz, J. Med. Chem. 2003, 46, 5458.
- 19See SI, Table S3 for BDE of cyclopropanone hemiketals (O-H, BDE=66 kcal mol−1) based on DFT calculation.
- 20
- 20aS. Aoki, T. Fujimura, E. Nakamura, I. Kuwajima, J. Am. Chem. Soc. 1988, 110, 3296;
- 20bK. Cheng, P. J. Walsh, Org. Lett. 2013, 15, 2298.