Density-Dependent Emission Colors from a Conformation-Switching Chromophore in Polyurethanes
Dr. Junwei Wang
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorRui Yan
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorYaofang Hu
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorGuoshuai Du
School of Aerospace Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorGuanming Liao
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorHuanzhi Yang
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Yunjun Luo
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoyan Zheng
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorCorresponding Author
Prof. Yabin Chen
School of Aerospace Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Suning Wang
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoyu Li
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorDr. Junwei Wang
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorRui Yan
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorYaofang Hu
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorGuoshuai Du
School of Aerospace Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorGuanming Liao
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorHuanzhi Yang
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Yunjun Luo
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoyan Zheng
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorCorresponding Author
Prof. Yabin Chen
School of Aerospace Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Suning Wang
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoyu Li
School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorIn memory of Professor Sunning Wang
Graphical Abstract
Full-color emission is achieved from a single fluorescent component by incorporating it into polyurethane matrices. Facilitated by the chemical structure of polyurethanes, the emission color could be modulated from blue to red by simply tuning the density of the chromophores, via either synthetic or physical approaches.
Abstract
Achieving full-color emission from a single chromophore is not only highly desirable from practical considerations, but also greatly challenging for fundamental research. Herein, we demonstrated the density-dependent emission colors from a single boron-containing chromophore, from which multi-color fluorescent polyurethanes were prepared as well. Originating from its switchable molecular conformations, the emission color of the chromophore was found to be governed by the packing density and strongly influenced by hydrogen bonding interactions. The chromophore was incorporated into polyurethanes to achieve full-color emitting materials; the emission color was only dependent on the chromophore density and could be tuned via synthetic approach by controlling the compositions. The emission colors could also be modulated by physical approaches, including by swelling/deswelling process, compression under high pressure, and even blending the fluorescent polyurethane with non-emitting ones.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202112290-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. G. Tian, J. M. Zhang, J. Yu, J. Wu, J. Zhang, J. S. He, F. S. Wang, Adv. Funct. Mater. 2018, 28, 1703548;
- 1bY. F. Yue, T. Kurokawa, M. A. Haque, T. Nakajima, T. Nonoyama, X. F. Li, I. Kajiwara, J. P. Gong, Nat. Commun. 2014, 5, 4659.
- 2
- 2aJ. Andres, R. D. Hersch, J. E. Moser, A. S. Chauvin, Adv. Funct. Mater. 2014, 24, 5029–5036;
- 2bC. Wu, S. S. Zeng, Z. F. Wang, F. Wang, H. Zhou, J. C. Zhang, Z. P. Ci, L. Y. Sun, Adv. Funct. Mater. 2018, 28, 1803168.
- 3
- 3aY. X. Zhuang, L. Wang, Y. Lv, T. L. Zhou, R. J. Xie, Adv. Funct. Mater. 2018, 28, 1705769;
- 3bC. G. Schafer, M. Gallei, J. T. Zahn, J. Engelhardt, G. P. Hellmann, M. Rehahn, Chem. Mater. 2013, 25, 2309–2318.
- 4
- 4aZ. Wang, X. W. He, T. Y. Yong, Y. Miao, C. Zhang, B. Z. Tang, J. Am. Chem. Soc. 2020, 142, 512–519;
- 4bH. V. Humeniuk, A. Rosspeintner, G. Licari, V. Kilin, L. Bonacina, E. Vauthey, N. Sakai, S. Matile, Angew. Chem. Int. Ed. 2018, 57, 10559–10563; Angew. Chem. 2018, 130, 10719–10723.
- 5
- 5aJ. N. Zhang, H. Kang, N. Li, S. M. Zhou, H. M. Sun, S. W. Yin, N. Zhao, B. Z. Tang, Chem. Sci. 2017, 8, 577–582;
- 5bY. Cao, J. K. Nagle, M. O. Wolf, B. O. Patrick, J. Am. Chem. Soc. 2015, 137, 4888–4891.
- 6Q. W. Zhang, D. F. Li, X. Li, P. B. White, J. Mecinovic, X. Ma, H. Agren, R. J. M. Nolte, H. Tian, J. Am. Chem. Soc. 2016, 138, 13541–13550.
- 7
- 7aM. C. Gather, A. Kohnen, A. Falcou, H. Becker, K. Meerholz, Adv. Funct. Mater. 2007, 17, 191–200;
- 7bJ. Kim, T. S. Lee, Macromol. Rapid Commun. 2016, 37, 303–310;
- 7cC. J. Christopherson, D. M. Mayder, J. Poisson, N. R. Paisley, C. M. Tonge, Z. M. Hudson, ACS Appl. Mater. Interfaces 2020, 12, 20000–20011.
- 8
- 8aR. Yoshii, A. Hirose, K. Tanaka, Y. Chujo, J. Am. Chem. Soc. 2014, 136, 18131–18139;
- 8bK. W. Chang, Z. H. Liu, H. B. Chen, L. Sheng, S. X. A. Zhang, D. T. Chiu, S. Y. Yin, C. F. Wu, W. P. Qin, Small 2014, 10, 4270–4275;
- 8cJ. Hu, Q. Li, X. D. Wang, S. Y. Shao, L. X. Wang, X. B. Jing, F. S. Wang, Angew. Chem. Int. Ed. 2019, 58, 8405–8409; Angew. Chem. 2019, 131, 8493–8497;
- 8dE. R. Sauve, C. M. Tonge, Z. M. Hudson, J. Am. Chem. Soc. 2019, 141, 16422–16431;
- 8eA. M. Polgar, J. Poisson, N. R. Paisley, C. J. Christopherson, A. C. Reyes, Z. M. Hudson, Macromolecules 2020, 53, 2039–2050;
- 8fG. Q. Zhang, S. E. Kooi, J. N. Demas, C. L. Fraser, Adv. Mater. 2008, 20, 2100;
- 8gZ. M. Hudson, D. J. Lunn, M. A. Winnik, I. Manners, Nat. Commun. 2014, 5, 3372;
- 8hC. M. Tonge, Z. M. Hudson, J. Am. Chem. Soc. 2019, 141, 13970–13976;
- 8iE. R. Sauve, C. M. Tonge, Z. M. Hudson, Chem. Mater. 2020, 32, 2208–2219.
- 9M. Kasha, Discuss. Faraday Soc. 1950, 9, 14–19.
- 10S. Park, J. E. Kwon, S. H. Kim, J. Seo, K. Chung, S. Y. Park, D. J. Jang, B. M. Medina, J. Gierschner, S. Y. Park, J. Am. Chem. Soc. 2009, 131, 14043–14049.
- 11
- 11aJ. E. Kwon, S. Park, S. Y. Park, J. Am. Chem. Soc. 2013, 135, 11239–11246;
- 11bN. Suzuki, A. Fukazawa, K. Nagura, S. Saito, H. Kitoh-Nishioka, D. Yokogawa, S. Irle, S. Yamaguchi, Angew. Chem. Int. Ed. 2014, 53, 8231–8235; Angew. Chem. 2014, 126, 8370–8374.
- 12
- 12aW. Chen, C. L. Chen, Z. Y. Zhang, Y. A. Chen, W. C. Chao, J. H. Su, H. Tian, P. T. Chou, J. Am. Chem. Soc. 2017, 139, 1636–1644;
- 12bC. X. Yuan, S. Saito, C. Camacho, S. Irle, I. Hisaki, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 8842–8845.
- 13J. W. Wang, N. Wang, G. Wu, S. Wang, X. Y. Li, Angew. Chem. Int. Ed. 2019, 58, 3082–3086; Angew. Chem. 2019, 131, 3114–3118.
- 14Y. G. Shi, J. W. Wang, H. J. Li, G. F. Hu, X. Li, S. K. Mellerup, N. Wang, T. Peng, S. Wang, Chem. Sci. 2018, 9, 1902–1911.
- 15
- 15aJ. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940;
- 15bY. H. Zhang, H. L. Mao, W. Q. Xu, J. B. Shi, Z. X. Cai, B. Tong, Y. P. Dong, Chem. Eur. J. 2018, 24, 15965–15977;
- 15cS. Y. Wang, B. X. Jin, G. F. Chen, Y. J. Luo, X. Y. Li, Polym. Chem. 2020, 11, 4706–4713;
- 15dR. Yoshii, K. Tanaka, Y. Chujo, Macromolecules 2014, 47, 2268–2278;
- 15eT. Butler, W. A. Morris, J. Samonina-Kosicka, C. L. Fraser, Chem. Commun. 2015, 51, 3359–3362;
- 15fT. Butler, M. Zhuang, C. L. Fraser, J. Phys. Chem. C 2018, 122, 19090–19099.
- 16M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT. 2016.
- 17B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4, 435.
- 18
- 18aB. Uysal, A. Ozcifci, J. Appl. Polym. Sci. 2006, 100, 3943–3947;
- 18bZ. Li, R. W. Zhang, K. S. Moon, Y. Liu, K. Hansen, T. R. Le, C. P. Wong, Adv. Funct. Mater. 2013, 23, 1459–1465.
- 19
- 19aJ. B. Xiong, K. Wang, Z. Q. Yao, B. Zou, J. L. Xu, X. H. Bu, ACS Appl. Mater. Interfaces 2018, 10, 5819–5827;
- 19bZ. W. Man, Z. Lv, Z. Z. Xu, Q. Liao, J. X. Liu, Y. L. Liu, L. Y. Fu, M. H. Liu, S. M. Bai, H. B. Fu, Adv. Funct. Mater. 2020, 30, 2000105;
- 19cX. Q. Bi, Y. G. Shi, T. Peng, S. W. Yue, F. Wang, L. Y. Zheng, Q. E. Cao, Adv. Funct. Mater. 2021, 31, 2101312;
- 19dG. Q. Zhang, J. W. Lu, M. Sabat, C. L. Fraser, J. Am. Chem. Soc. 2010, 132, 2160;
- 19eR. Yoshii, K. Suenaga, K. Tanaka, Y. Chujo, Chem. Eur. J. 2015, 21, 7231–7237.
- 20
- 20aQ. Wang, Q. Zhang, Q. W. Zhang, X. Li, C. X. Zhao, T. Y. Xu, D. H. Qu, H. Tian, Nat. Commun. 2020, 11, 158;
- 20bW. Jeong, M. I. Khazi, D. H. Park, Y. S. Jung, J. M. Kim, Adv. Funct. Mater. 2016, 26, 5230–5238;
- 20cL. Wang, J. Hiblot, C. Popp, L. Xue, K. Johnsson, Angew. Chem. Int. Ed. 2020, 59, 21880; Angew. Chem. 2020, 132, 22064;
- 20dT. Mori, Y. Yoshigoe, Y. Kuninobu, Angew. Chem. Int. Ed. 2019, 58, 14457–14461; Angew. Chem. 2019, 131, 14599–14603.
- 21
- 21aC. Reus, S. Weidlich, M. Bolte, H. W. Lerner, M. Wagner, J. Am. Chem. Soc. 2013, 135, 12892–12907;
- 21bC. D. Dou, Z. C. Ding, Z. J. Zhang, Z. Y. Xie, J. Liu, L. X. Wang, Angew. Chem. Int. Ed. 2015, 54, 3648–3652; Angew. Chem. 2015, 127, 3719–3723;
- 21cV. M. Hertz, M. Bolte, H. W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2015, 54, 8800–8804; Angew. Chem. 2015, 127, 8924–8928;
- 21dJ. W. Wang, B. X. Jin, N. Wang, T. Peng, X. Y. Li, Y. J. Luo, S. Wang, Macromolecules 2017, 50, 4629–4638;
- 21eA. Lorbach, M. Bolte, H. Y. Li, H. W. Lerner, M. C. Holthausen, F. Jäkle, M. Wagner, Angew. Chem. Int. Ed. 2009, 48, 4584–4588; Angew. Chem. 2009, 121, 4654–4658;
- 21fC. H. Zhao, A. Wakamiya, Y. Inukai, S. Yamaguchi, J. Am. Chem. Soc. 2006, 128, 15934–15935;
- 21gF. Vidal, J. Gomezcoello, R. A. Lalancette, F. Jäkle, J. Am. Chem. Soc. 2019, 141, 15963–15971;
- 21hJ. Gilmer, H. Budy, T. Kaese, M. Bolte, H. W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2020, 59, 5621–5625; Angew. Chem. 2020, 132, 5670–5674;
- 21iK. Parab, K. Venkatasubbaiah, F. Jäkle, J. Am. Chem. Soc. 2006, 128, 12879–12885;
- 21jX. D. Yin, F. Guo, R. A. Lalancette, F. Jäkle, Macromolecules 2016, 49, 537–546.