Energy Band Alignment and Redox-Active Sites in Metalloporphyrin-Spaced Metal-Catechol Frameworks for Enhanced CO2 Photoreduction
Dr. Er-Xia Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorDr. Mei Qiu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
College of Chemistry, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 P. R. China
Search for more papers by this authorProf. Yong-Fan Zhang
College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 P. R. China
Search for more papers by this authorLiang He
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorYa-Yong Sun
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorHui-Li Zheng
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorDr. Xin Wu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qipu Lin
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorDr. Er-Xia Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorDr. Mei Qiu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
College of Chemistry, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 P. R. China
Search for more papers by this authorProf. Yong-Fan Zhang
College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 P. R. China
Search for more papers by this authorLiang He
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorYa-Yong Sun
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorHui-Li Zheng
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorDr. Xin Wu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qipu Lin
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorGraphical Abstract
A series of hydro-stable metalloporphyrin-bridged metal-phenate frameworks are constructed, which exhibit artificial photosynthetic activity under visible-light irradiation without photosensitizer or sacrificial agent. Activity is boosted by substitution of the Fe-oxo chain for an In-oxo chain, and further enhanced by addition of the uncoordinated hydroxyl groups of catechol into the scaffold.
Abstract
Two new chemically stable metalloporphyrin-bridged metal-catechol frameworks, InTCP-Co and FeTCP-Co, were constructed to achieve artificial photosynthesis without additional sacrificial agents and photosensitizers. The CO2 photoreduction rate over FeTCP-Co considerably exceeds that obtained over InTCP-Co, and the incorporation of uncoordinated hydroxyl groups, associated with catechol, into the network further promotes the photocatalytic activity. The iron-oxo coordination chain assists energy band alignment and provides a redox-active site, and the uncoordinated hydroxyl group contributes to the visible-light absorptance, charge-carrier transfer, and CO2-scaffold affinity. With a formic acid selectivity of 97.8 %, FeTCP-OH-Co affords CO2 photoconversion with a reaction rate 4.3 and 15.7 times higher than those of FeTCP- Co and InTCP-Co, respectively. These findings are also consistent with the spectroscopic study and DFT calculation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202111622-sup-0001-cif.zip2.2 KB | Supporting Information |
anie202111622-sup-0001-misc_information.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Wagner, C. D. Sahm, E. Reisner, Nat. Catal. 2020, 3, 775–786;
- 1bL. Caesar, S. Rahmstorf, A. Robinson, G. Feulner, V. Saba, Nature 2018, 556, 191–196.
- 2
- 2aT. Kong, Y. Jiang, Y. Xiong, Chem. Soc. Rev. 2020, 49, 6579–6591;
- 2bM. P. Jiang, K. K. Huang, J. H. Liu, D. Wang, Y. Wang, X. Wang, Z. D. Li, X. Y. Wang, Z. B. Geng, X. Y. Hou, S. H. Feng, Chem 2020, 6, 2335–2346;
- 2cT. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982–5993;
- 2dJ. Albero, Y. Peng, H. García, ACS Catal. 2020, 10, 5734–5749;
- 2eX. G. Zhang, L. Zhang, S. Feng, H. Qin, D. Y. Wu, Y. Zhao, J. Phys. Chem. Lett. 2021, 12, 1125–1130.
- 3J. Becerra, D. T. Nguyen, V. N. Gopalakrishnan, T. O. Do, ACS Appl. Energy Mater. 2020, 3, 7659–7665.
- 4
- 4aY. Zhang, B. Xia, J. Ran, K. Davey, S. Z. Qiao, Adv. Energy Mater. 2020, 10, 1903879;
- 4bJ. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919–9986;
- 4cS. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372–7408; Angew. Chem. 2013, 125, 7516–7557;
- 4dL. Liu, S. Wang, H. Huang, Y. Zhang, T. Ma, Nano Energy 2020, 75, 104959.
- 5
- 5aY. Wang, S. Wang, S. L. Zhang, X. W. Lou, Angew. Chem. Int. Ed. 2020, 59, 11918–11922; Angew. Chem. 2020, 132, 12016–12020;
- 5bZ. Zhu, X. Li, Y. Qu, F. Zhou, Z. Wang, W. Wang, C. Zhao, H. Wang, L. Li, Y. Yao, Q. Zhang, Y. Wu, Nano Res. 2021, 14, 81–90;
- 5cJ. Wang, S. Lin, N. Tian, T. Ma, Y. Zhang, H. Huang, Adv. Funct. Mater. 2021, 31, 2008008.
- 6
- 6aC. Cometto, R. Kuriki, L. Chen, K. Maeda, T. C. Lau, O. Ishitani, M. Robert, J. Am. Chem. Soc. 2018, 140, 7437–7440;
- 6bP. Yang, R. Wang, H. Tao, Y. Zhang, M. M. Titirici, X. Wang, Appl. Catal. B 2021, 280, 119454;
- 6cS. Patnaik, D. P. Sahoo, K. Parida, Carbon 2021, 172, 682–711.
- 7
- 7aX. Ren, D. Philo, Y. Li, L. Shi, K. Chang, J. Ye, Coord. Chem. Rev. 2020, 424, 213516;
- 7bP. Niu, Z. Pan, S. Wang, X. Wang, ChemSusChem 2021, 14, 1302–1307;
- 7cX. Zhang, D. Kim, J. Yan, L. Y. S. Lee, ACS Appl. Mater. Interfaces 2021, 13, 9762–9770.
- 8
- 8aP. B. Pati, R. Wang, E. Boutin, S. Diring, S. Jobic, N. Barreau, F. Odobel, M. Robert, Nat. Commun. 2020, 11, 3499;
- 8bC. D. Windle, R. N. Perutz, Coord. Chem. Rev. 2012, 256, 2562–2570;
- 8cA. J. Morris, G. J. Merer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983–1994.
- 9
- 9aQ. Wang, D. Astruc, Chem. Rev. 2020, 120, 1438–1511;
- 9bX. K. Wang, J. Liu, L. Zhang, L. Z. Dong, S. L. Li, Y. H. Kan, D. S. Li, Y. Q. Lan, ACS Catal. 2019, 9, 1726–1732;
- 9cD. Li, M. Kassymova, X. Cai, S. Q. Zang, H. L. Jiang, Coord. Chem. Rev. 2020, 412, 213262;
- 9dM. Ding, R. W. Flaig, H. L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828.
- 10
- 10aD. Wang, R. Huang, W. Liu, D. Sun, Z. Li, ACS Catal. 2014, 4, 4254–4260;
- 10bX. Y. Dao, J. H. Guo, Y. P. Wei, F. Guo, Y. Liu, W. Y. Sun, Inorg. Chem. 2019, 58, 8517–8524;
- 10cX. Y. Dao, J. H. Guo, X. Y. Zhang, S. Q. Wang, X. M. Cheng, W. Y. Sun, J. Mater. Chem. A 2020, 8, 25850–25856;
- 10dH. Dong, X. Zhang, Y. Lu, Y. Yang, Y. P. Zhang, H. L. Tang, F. M. Zhang, Z. D. Yang, X. Sun, Y. Feng, Appl. Catal. B 2020, 276, 119173.
- 11Z. B. Fang, T. T. Liu, J. Liu, S. Jin, X. P. Wu, X. Q. Gong, K. Wang, Q. Yin, T. F. Liu, R. Cao, H. C. Zhou, J. Am. Chem. Soc. 2020, 142, 12515–12523.
- 12L. Z. Dong, L. Zhang, J. Liu, Q. Huang, M. Lu, W. X. Ji, Y. Q. Lan, Angew. Chem. Int. Ed. 2020, 59, 2659–2663; Angew. Chem. 2020, 132, 2681–2685.
- 13
- 13aE. X. Chen, M. Qiu, Y. F. Zhang, Y. S. Zhu, L. Y. Liu, Y. Y. Sun, X. Bu, J. Zhang, Q. Lin, Adv. Mater. 2018, 30, 1704388;
- 13bN. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 1504–1518.
- 14
- 14aE. S. Grape, J. G. Flores, T. Hidalgo, E. Martinez-Ahumada, A. Gutierrez-Alejandre, A. Hautier, D. R. Williams, M. O'Keeffe, L. Ohrstrom, T. Willhammar, P. Horcajada, I. A. Ibarra, A. K. Inge, J. Am. Chem. Soc. 2020, 142, 16795–16804;
- 14bY. Wang, S. Takki, O. Cheung, H. Xu, W. Wan, L. Ohrstrom, A. K. Inge, Chem. Commun. 2017, 53, 7018–7021.
- 15E. X. Chen, G. Xu, Q. Lin, Inorg. Chem. 2019, 58, 3569–3573.
- 16Accelerys Materials Studio Release Notes, Release 7.0, Accelrys Software, Inc., San Diego 2014.
- 17
- 17aH. L. Nguyen, Adv. Energy Mater. 2020, 10, 2002091;
- 17bJ. Ran, M. Jaroniec, S. Z. Qiao, Adv. Mater. 2018, 30, 1704649.
- 18P. Gimeno, C. Bousquet, N. Lassu, A. F. Maggio, C. Civade, C. Brenier, L. Lempereur, J. Pharm. Biomed. Anal. 2015, 107, 386–393.
- 19N. Li, J. Liu, J. J. Liu, L. Z. Dong, Z. F. Xin, Y. L. Teng, Y. Q. Lan, Angew. Chem. Int. Ed. 2019, 58, 5226–5231; Angew. Chem. 2019, 131, 5280–5285.
- 20
- 20aN. Sadeghi, S. Sharifnia, M. Sheikh Arabi, J. CO2 Util. 2016, 16, 450–457;
- 20bX. Yang, Y. Zhang, F. Li, T. Guo, Y. Wu, F. Jin, M. Fang, Y. Lan, Y. Li, Y. Zhou, Z. Zou, Dalton Trans. 2017, 46, 8204–8218.
- 21
- 21aH. Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, J. Am. Chem. Soc. 2015, 137, 13440–13443;
- 21bY. N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng, J. Jiang, H. L. Jiang, J. Am. Chem. Soc. 2020, 142, 16723–16731.