Highly Processable Covalent Organic Framework Gel Electrolyte Enabled by Side-Chain Engineering for Lithium-Ion Batteries
Ziya Liu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Kun Zhang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Guoji Huang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Search for more papers by this authorCorresponding Author
Dr. Bingqing Xu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Search for more papers by this authorDr. You-lee Hong
RIKEN-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
Search for more papers by this authorDr. Xiaowei Wu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Search for more papers by this authorDr. Yusuke Nishiyama
JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 196-8558 Japan
Search for more papers by this authorCorresponding Author
Prof. Satoshi Horike
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
Search for more papers by this authorCorresponding Author
Prof. Gen Zhang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Search for more papers by this authorProf. Susumu Kitagawa
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
Search for more papers by this authorZiya Liu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Kun Zhang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Guoji Huang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Search for more papers by this authorCorresponding Author
Dr. Bingqing Xu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Search for more papers by this authorDr. You-lee Hong
RIKEN-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
Search for more papers by this authorDr. Xiaowei Wu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Search for more papers by this authorDr. Yusuke Nishiyama
JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 196-8558 Japan
Search for more papers by this authorCorresponding Author
Prof. Satoshi Horike
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
Search for more papers by this authorCorresponding Author
Prof. Gen Zhang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Search for more papers by this authorProf. Susumu Kitagawa
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
Search for more papers by this authorGraphical Abstract
Abstract
Although covalent organic frameworks (COFs) with a graphene-like structure present unique chemical and physical properties, they are essentially insoluble and infusible crystalline powders with poor processability, hindering their further practical applications. How to improve the processability of COF materials is a major challenge in this field. In this contribution, we proposed a general side-chain engineering strategy to construct a gel-state COF with high processability. This method takes advantages of large and soft branched alkyl side chains as internal plasticizers to achieve the gelation of the COF. We systematically studied the influence of the length of the side chain on the COF gel formation. Benefitting from their machinability and flexibility, this novel COF gel can be easily processed into gel-type electrolytes with specific shape and thickness, which were further applied to assemble lithium-ion batteries that exhibited high cycling stability.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202110695-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. De Rossi, K. Kajiwara, Y. Osada, A. Yamauchi, in Fundamentals and Biomedical Applications, Springer, Heidelberg, 1991.
- 2G. W. Ashley, J. Henise, R. Reid, D. V. Santi, Proc. Natl. Acad. Sci. USA 2013, 110, 2318–2323.
- 3C. Löwenberg, M. Balk, C. Wischke, M. Behl, A. Lendlein, Acc. Chem. Res. 2017, 50, 723–732.
- 4T. Hwang, Z. Frank, J. Neubauer, K. J. Kim, Sci. Rep. 2019, 9, 1–9.
- 5S. Dong, Y. Luo, X. Yan, B. Zheng, X. Ding, Y. Yu, Z. Ma, Q. Zhao, F. Huang, Angew. Chem. Int. Ed. 2011, 50, 1905–1909; Angew. Chem. 2011, 123, 1945–1949.
- 6J. H. Jung, J. H. Lee, J. R. Silverman, G. John, Chem. Soc. Rev. 2013, 42, 924–936.
- 7
- 7aA. K. Yetisen, H. Butt, L. R. Volpatti, I. Pavlichenko, M. Humar, S. J. Kwok, H. Koo, K. S. Kim, I. Naydenova, A. Khademhosseini, Biotechnol. Adv. 2016, 34, 250–271;
- 7bD. G. Seo, Y. M. Kim, H. Ahn, H. C. Moon, Nanoscale 2019, 11, 16733–16742.
- 8
- 8aX. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Adv. Energy Mater. 2018, 8, 1702184;
- 8bM. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin, C. Miao, H. Du, B. Li, Q.-H. Yang, Z. Lin, T. S. Zhao, F. Kang, Nano Energy 2016, 22, 278–289.
- 9
- 9aZ. Xue, D. He, X. Xie, J. Mater. Chem. A 2015, 3, 19218–19253;
- 9bX. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, Y. Xie, Nat. Commun. 2016, 7, 11782;
- 9cH. Gao, L. Xue, S. Xin, J. B. Goodenough, Angew. Chem. Int. Ed. 2018, 57, 5449–5453; Angew. Chem. 2018, 130, 5547–5551.
- 10A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 11K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 2020, 120, 8814–8933.
- 12X. He, Y. Yang, H. Wu, G. He, Z. Xu, Y. Kong, L. Cao, B. Shi, Z. Zhang, C. Tongsh, K. Jiao, K. Zhu, Z. Jiang, Adv. Mater. 2020, 32, 2001284.
- 13G. Li, K. Zhang, T. Tsuru, ACS Appl. Mater. Interfaces 2017, 9, 8433–8436.
- 14J. Liu, G. Han, D. Zhao, K. Lu, J. Gao, T.-S. Chung, Sci. Adv. 2020, 6, eabb1110.
- 15
- 15aS. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park, J. Kim, D. Lee, K. Kang, Nat. Nanotechnol. 2021, 16, 77–84;
- 15bJ. Hou, A. F. Sapnik, T. D. Bennett, Chem. Sci. 2020, 11, 310–323.
- 16
- 16aP. Küsgens, A. Zgaverdea, H. G. Fritz, S. Siegle, S. Kaskel, J. Am. Chem. Soc. 2010, 132, 2476–2479;
- 16bN. Moitra, S. Fukumoto, J. Reboul, K. Sumida, Y. Zhu, K. Nakanishi, S. Furukawa, S. Kitagawa, K. Kanamori, Chem. Commun. 2015, 51, 3511–3514.
- 17
- 17aM. Rubio-Martinez, C. Avci-Camur, A. W. Thornton, I. Imaz, D. Maspoch, M. R. Hill, Chem. Soc. Rev. 2017, 46, 3453–3480;
- 17bH. Zhu, X. Yang, E. D. Cranston, S. Zhu, Adv. Mater. 2016, 28, 7652–7657.
- 18
- 18aR. Zhao, Z. Liang, R. Zou, Q. Xu, Joule 2018, 2, 2235–2259;
- 18bC. Zhang, L. Shen, J. Shen, F. Liu, G. Chen, R. Tao, S. Ma, Y. Peng, Y. Lu, Adv. Mater. 2019, 31, 1808338;
- 18cX.-C. Xie, K.-J. Huang, X. Wu, J. Mater. Chem. A 2018, 6, 6754–6771;
- 18dL. Shen, H. B. Wu, F. Liu, J. L. Brosmer, G. Shen, X. Wang, J. I. Zink, Q. Xiao, M. Cai, G. Wang, Y. Lu, B. Dunn, Adv. Mater. 2018, 30, 1707476.
- 19
- 19aG. Zhang, Y. L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, S. Horike, J. Am. Chem. Soc. 2019, 141, 1227–1234;
- 19bY. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang, I. Sellinger, M. Ortiz, Y. Jin, S. H. Lee, W. Zhang, J. Am. Chem. Soc. 2019, 141, 7518–7525;
- 19cZ. Guo, Y. Zhang, Y. Dong, J. Li, S. Li, P. Shao, X. Feng, B. Wang, J. Am. Chem. Soc. 2019, 141, 1923–1927.
- 20Z. Wang, W. Zheng, W. Sun, L. Zhao, W. Yuan, ACS Appl. Energy Mater. 2021, 4, 2808–2819.
- 21A. Shinohara, C. Pan, Z. Guo, L. Zhou, Z. Liu, L. Du, Z. Yan, F. J. Stadler, L. Wang, T. Nakanishi, Angew. Chem. Int. Ed. 2019, 58, 9581–9585; Angew. Chem. 2019, 131, 9682–9686.
- 22F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11478–11481.
- 23T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux, J. Yang, C. Wang, D. Shanmukaraj, B. Sun, M. Armand, Y. Cui, G. Wang, Nat. Commun. 2020, 11, 5429.
- 24J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012.
- 25
- 25aM. Wang, Z. Peng, W. Luo, F. Ren, Z. Li, Q. Zhang, H. He, C. Ouyang, D. Wang, Adv. Energy Mater. 2019, 9, 1802912;
- 25bT. T. Beyene, H. K. Bezabh, M. A. Weret, T. M. Hagos, C.-J. Huang, C.-H. Wang, W.-N. Su, H. Dai, B.-J. Hwang, J. Electrochem. Soc. 2019, 166, A1501.
- 26H. Lee, H.-S. Lim, X. Ren, L. Yu, M. H. Engelhard, K. S. Han, J. Lee, H.-T. Kim, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, ACS Energy Lett. 2018, 3, 2921–2930.