Organic Matrix Assisted Low-temperature Crystallization of Black Phase Inorganic Perovskites
Dr. Yuetian Chen
School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorXiaomin Liu
School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Yixin Zhao
School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200240 China
Search for more papers by this authorDr. Yuetian Chen
School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorXiaomin Liu
School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Yixin Zhao
School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200240 China
Search for more papers by this authorGraphical Abstract
An organic matrix can assist the crystallization of all-organic perovskites at temperatures lower than the phase transition point of black phase CsPbX3 perovskite. This low-temperature crystallization takes place through the formation and decomposition of an intermediate state which is reminiscent of an organic–inorganic perovskite matrix.
Abstract
All-inorganic perovskites have attracted increasing attention for applications in perovskite solar cells (PSCs) and optoelectronics, including light-emitting devices (LEDs). Cesium lead halide perovskites with tunable I/Br ratios and a band gap aligning with the sunlight region are promising candidates for PSCs. Although impressive progress has been made to improve device efficiency from the initial 2.9 % with low phase stability to over 20 % with high stability, there are still questions regarding the perovskite crystal growth mechanism, especially at low temperatures. In this Minireview, we summarize recent developments in using an organic matrix, including the addition and use of organic ions, polymers, and solvent molecules, for the crystallization of black phase inorganic perovskites at temperatures lower than the phase transition point. We also discuss possible mechanisms for this low-temperature crystallization and their effect on the stability of black phase perovskites. We conclude with an outlook and perspective for further fabrication of large-scale inorganic perovskites for optoelectronic applications.
Conflict of interest
The authors declare no conflict of interest.
References
- 1Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, S. Jin, Nat. Rev. Mater. 2019, 4, 169–188.
- 2A. K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 2019, 119, 3036–3103.
- 3J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, N.-G. Park, Chem. Rev. 2020, 120, 7867–7918.
- 4Y. Zhao, K. Zhu, Chem. Soc. Rev. 2016, 45, 655–689.
- 5T. Han, S. Tan, J. Xue, L. Meng, J. Lee, Y. Yang, Adv. Mater. 2019, 31, 1803515.
- 6B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48, 3842–3867.
- 7N.-G. Park, K. Zhu, Nat. Rev. Mater. 2020, 5, 333–350.
- 8B. Park, S. I. Seok, Adv. Mater. 2019, 31, 1805337.
- 9C. C. Boyd, R. Cheacharoen, T. Leijtens, M. D. McGehee, Chem. Rev. 2019, 119, 3418–3451.
- 10B. Kim, S. I. Seok, Energy Environ. Sci. 2020, 13, 805–820.
- 11L. Lanzetta, N. Aristidou, S. A. Haque, J. Phys. Chem. Lett. 2020, 11, 574–585.
- 12S. Bae, S. Kim, S.-W. Lee, K. J. Cho, S. Park, S. Lee, Y. Kang, H.-S. Lee, D. Kim, J. Phys. Chem. Lett. 2016, 7, 3091–3096.
- 13Y. Zhou, Y. Zhao, Energy Environ. Sci. 2019, 12, 1495–1511.
- 14Y. Wang, Y. Chen, T. Zhang, X. Wang, Y. Zhao, Adv. Mater. 2020, 32, 2001025.
- 15W. Xiang, S. Liu, W. Tress, Energy Environ. Sci. 2021, 14, 2090–2113.
- 16J. Tian, Q. Xue, Q. Yao, N. Li, C. J. Brabec, H. Yip, Adv. Energy Mater. 2020, 10, 2000183.
- 17G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, J. Mater. Chem. A 2015, 3, 19688–19695.
- 18NREL, “Best Research Cell Efficiency Chart,” can be found under https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev210726.pdf, 2021.
- 19S. M. Yoon, H. Min, J. B. Kim, G. Kim, K. S. Lee, S. I. Seok, Joule 2021, 5, 183–196.
- 20B. Yu, J. Shi, S. Tan, Y. Cui, W. Zhao, H. Wu, Y. Luo, D. Li, Q. Meng, Angew. Chem. Int. Ed. 2021, 60, 13436–13443; Angew. Chem. 2021, 133, 13548–13555.
- 21W. Xiang, W. Tress, Adv. Mater. 2019, 31, 1902851.
- 22Q. Tai, K.-C. Tang, F. Yan, Energy Environ. Sci. 2019, 12, 2375–2405.
- 23W. Chen, X. Li, Y. Li, Y. Li, Energy Environ. Sci. 2020, 13, 1971–1996.
- 24Y. Chen, X. Liu, T. Wang, Y. Zhao, Acc. Chem. Res. 2021, 54, 3452–3461.
- 25Y. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Grätzel, Y. Zhao, Science 2019, 365, 591–595.
- 26W. Chu, W. A. Saidi, J. Zhao, O. V. Prezhdo, Angew. Chem. Int. Ed. 2020, 59, 6435–6441; Angew. Chem. 2020, 132, 6497–6503.
- 27S. Dastidar, C. J. Hawley, A. D. Dillon, A. D. Gutierrez-Perez, J. E. Spanier, A. T. Fafarman, J. Phys. Chem. Lett. 2017, 8, 1278–1282.
- 28A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C. C. Stoumpos, M. G. Kanatzidis, J. Even, ACS Nano 2018, 12, 3477–3486.
- 29J. A. Steele, H. Jin, I. Dovgaliuk, R. F. Berger, T. Braeckevelt, H. Yuan, C. Martin, E. Solano, K. Lejaeghere, S. M. J. Rogge, C. Notebaert, W. Vandezande, K. P. F. Janssen, B. Goderis, E. Debroye, Y.-K. Wang, Y. Dong, D. Ma, M. Saidaminov, H. Tan, Z. Lu, V. Dyadkin, D. Chernyshov, V. Van Speybroeck, E. H. Sargent, J. Hofkens, M. B. J. Roeffaers, Science 2019, 365, 679–684.
- 30C. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 2015, 48, 2791–2802.
- 31Q. A. Akkerman, L. Manna, ACS Energy Lett. 2020, 5, 604–610.
- 32R. J. Sutton, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, F. Giustino, H. J. Snaith, ACS Energy Lett. 2018, 3, 1787–1794.
- 33B. Wang, N. Novendra, A. Navrotsky, J. Am. Chem. Soc. 2019, 141, 14501–14504.
- 34R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.-G. Boyen, M. F. Toney, M. D. McGehee, J. Am. Chem. Soc. 2017, 139, 11117–11124.
- 35J. A. Steele, E. Solano, H. Jin, V. Prakasam, T. Braeckevelt, H. Yuan, Z. Lin, R. Kloe, Q. Wang, S. M. J. Rogge, V. Van Speybroeck, D. Chernyshov, J. Hofkens, M. B. J. Roeffaers, Adv. Mater. 2021, 33, 2007224.
- 36M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506–514.
- 37D. B. Straus, S. Guo, A. M. Abeykoon, R. J. Cava, Adv. Mater. 2020, 32, 2001069.
- 38R. X. Yang, J. M. Skelton, E. L. da Silva, J. M. Frost, A. Walsh, J. Phys. Chem. Lett. 2017, 8, 4720–4726.
- 39Y. Miao, Y. Chen, H. Chen, X. Wang, Y. Zhao, Chem. Sci. 2021, 12, 7231–7247.
- 40H. Rao, S. Ye, F. Gu, Z. Zhao, Z. Liu, Z. Bian, C. Huang, Adv. Energy Mater. 2018, 8, 1800758.
- 41F. Zhang, K. Zhu, Adv. Energy Mater. 2020, 10, 1902579.
- 42S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong, A. Mei, H. Han, Adv. Energy Mater. 2020, 10, 1902492.
- 43S. Ullah, J. Wang, P. Yang, L. Liu, Y. Li, A.-U. Rehman, S.-E. Yang, T. Xia, H. Guo, Y. Chen, Sol. RRL 2021, 5, 2100172.
- 44A. M. Igual-Muñoz, J. Navarro-Alapont, C. Dreessen, F. Palazon, M. Sessolo, H. J. Bolink, Chem. Mater. 2020, 32, 8641–8652.
- 45P. Becker, J. A. Márquez, J. Just, A. Al-Ashouri, C. Hages, H. Hempel, M. Jošt, S. Albrecht, R. Frahm, T. Unold, Adv. Energy Mater. 2019, 9, 1900555.
- 46A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92–95.
- 47J. Yuan, A. Hazarika, Q. Zhao, X. Ling, T. Moot, W. Ma, J. M. Luther, Joule 2020, 4, 1160–1185.
- 48A. O. El-Ballouli, O. M. Bakr, O. F. Mohammed, Chem. Mater. 2019, 31, 6387–6411.
- 49J. Shamsi, A. S. Urban, M. Imran, L. De Trizio, L. Manna, Chem. Rev. 2019, 119, 3296–3348.
- 50J. Xue, R. Wang, Y. Yang, Nat. Rev. Mater. 2020, 5, 809–827.
- 51L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692–3696.
- 52Y. Zhang, T. D. Siegler, C. J. Thomas, M. K. Abney, T. Shah, A. De Gorostiza, R. M. Greene, B. A. Korgel, Chem. Mater. 2020, 32, 5410–5423.
- 53A. Dey, J. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, L. N. Quan, F. Yan, M. Gao, X. Li, J. Shamsi, T. Debnath, M. Cao, M. A. Scheel, S. Kumar, J. A. Steele, M. Gerhard, L. Chouhan, K. Xu, X. Wu, Y. Li, Y. Zhang, A. Dutta, C. Han, I. Vincon, A. L. Rogach, A. Nag, A. Samanta, B. A. Korgel, C.-J. Shih, D. R. Gamelin, D. H. Son, H. Zeng, H. Zhong, H. Sun, H. V. Demir, I. G. Scheblykin, I. Mora-Seró, J. K. Stolarczyk, J. Z. Zhang, J. Feldmann, J. Hofkens, J. M. Luther, J. Pérez-Prieto, L. Li, L. Manna, M. I. Bodnarchuk, M. V. Kovalenko, M. B. J. Roeffaers, N. Pradhan, O. F. Mohammed, O. M. Bakr, P. Yang, P. Müller-Buschbaum, P. V. Kamat, Q. Bao, Q. Zhang, R. Krahne, R. E. Galian, S. D. Stranks, S. Bals, V. Biju, W. A. Tisdale, Y. Yan, R. L. Z. Hoye, L. Polavarapu, ACS Nano 2021, 15, 10775–10981.
- 54G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels, L. Manna, ACS Nano 2018, 12, 1704–1711.
- 55H. Wang, Z. Dong, H. Liu, W. Li, L. Zhu, H. Chen, Adv. Energy Mater. 2021, 11, 2002940.
- 56M. Jung, S.-G. Ji, G. Kim, S. I. Seok, Chem. Soc. Rev. 2019, 48, 2011–2038.
- 57N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897–903.
- 58Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 2014, 5, 4175–4186.
- 59Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28, 284–292.
- 60H. Zhang, D. Li, J. Cheng, F. Lin, J. Mao, A. K.-Y. Jen, M. Grätzel, W. C. H. Choy, J. Mater. Chem. A 2017, 5, 3599–3608.
- 61R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo, D. Fenning, G. Xu, S. Nuryyeva, T. Huang, Y. Zhao, J. L. Yang, J. Zhu, M. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509–1513.
- 62Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, Angew. Chem. Int. Ed. 2019, 58, 16691–16696; Angew. Chem. 2019, 131, 16844–16849.
- 63N. K. Noel, M. Congiu, A. J. Ramadan, S. Fearn, D. P. McMeekin, J. B. Patel, M. B. Johnston, B. Wenger, H. J. Snaith, Joule 2017, 1, 328–343.
- 64W. Ke, I. Spanopoulos, C. C. Stoumpos, M. G. Kanatzidis, Nat. Commun. 2018, 9, 4785.
- 65Y. Pei, Y. Liu, F. Li, S. Bai, X. Jian, M. Liu, iScience 2019, 15, 165–172.
- 66X. Sun, Z. Shao, Y. Rao, H. Meng, C. Gao, C. Chen, D. Liu, P. Lv, Z. Li, X. Wang, G. Cui, S. Pang, Adv. Energy Mater. 2021, 11, 2002754.
- 67Y. Wang, T. Zhang, F. Xu, Y. Li, Y. Zhao, Sol. RRL 2018, 2, 1700180.
- 68T. Zhang, H. Li, S. Liu, X. Wang, X. Gong, Q. Sun, Y. Shen, M. Wang, J. Phys. Chem. Lett. 2019, 10, 200–205.
- 69Y. Wang, G. Chen, D. Ouyang, X. He, C. Li, R. Ma, W. Yin, W. C. H. Choy, Adv. Mater. 2020, 32, 2000186.
- 70T. Zhang, Y. Wang, X. Wang, M. Wu, W. Liu, Y. Zhao, Sci. Bull. 2019, 64, 1773–1779.
- 71S. Tan, J. Shi, B. Yu, W. Zhao, Y. Li, Y. Li, H. Wu, Y. Luo, D. Li, Q. Meng, Adv. Funct. Mater. 2021, 31, 2010813.
- 72C. Chen, Z. Song, C. Xiao, R. A. Awni, C. Yao, N. Shrestha, C. Li, S. S. Bista, Y. Zhang, L. Chen, R. J. Ellingson, C.-S. Jiang, M. Al-Jassim, G. Fang, Y. Yan, ACS Energy Lett. 2020, 5, 2560–2568.
- 73S. Wu, J. Zhang, Z. Li, D. Liu, M. Qin, S. H. Cheung, X. Lu, D. Lei, S. K. So, Z. Zhu, K.-Y. Jen, Joule 2020, 4, 1248–1262.
- 74D. Kim, H. J. Jung, I. J. Park, B. W. Larson, S. P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S. G. Ji, F. Zhang, S. R. Pae, M. Kim, S. B. Kang, V. Dravid, J. J. Berry, J. Y. Kim, K. Zhu, D. H. Kim, B. Shin, Science 2020, 368, 155–160.
- 75Y. Fu, T. Wu, J. Wang, J. Zhai, M. J. Shearer, Y. Zhao, R. J. Hamers, E. Kan, K. Deng, X.-Y. Zhu, S. Jin, Nano Lett. 2017, 17, 4405–4414.
- 76Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang, Y. Zhao, Joule 2018, 2, 2065–2075.
- 77K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, S. Liu, Nat. Commun. 2018, 9, 4544.
- 78Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan, J. Chen, Joule 2018, 2, 1356–1368.
- 79X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
- 80X. Liu, X. Wang, T. Zhang, Y. Miao, Z. Qin, Y. Chen, Y. Zhao, Angew. Chem. Int. Ed. 2021, 60, 12351–12355; Angew. Chem. 2021, 133, 12459–12463.
- 81Y. Wang, T. Zhang, M. Kan, Y. Zhao, J. Am. Chem. Soc. 2018, 140, 12345–12348.
- 82C. Liu, Y. Yang, X. Xia, Y. Ding, Z. Arain, S. An, X. Liu, R. C. Cristina, S. Dai, M. K. Nazeeruddin, Adv. Energy Mater. 2020, 10, 1903751.
- 83C. Liu, Y. Yang, O. A. Syzgantseva, Y. Ding, M. A. Syzgantseva, X. Zhang, A. M. Asiri, S. Dai, M. K. Nazeeruddin, Adv. Mater. 2020, 32, 2002632.
- 84M. Wang, F. Cao, M. Wang, K. Deng, L. Li, Adv. Mater. 2021, 33, 2006745.
- 85X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han, M. Grätzel, Nat. Chem. 2015, 7, 703–711.
- 86T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Sci. Adv. 2017, 3, e1700841.
- 87T. Zhang, L. Xie, L. Chen, N. Guo, G. Li, Z. Tian, B. Mao, Y. Zhao, Adv. Funct. Mater. 2017, 27, 1603568.
- 88Q. Hu, L. Zhao, J. Wu, K. Gao, D. Luo, Y. Jiang, Z. Zhang, C. Zhu, E. Schaible, A. Hexemer, C. Wang, Y. Liu, W. Zhang, M. Grätzel, F. Liu, T. P. Russell, R. Zhu, Q. Gong, Nat. Commun. 2017, 8, 15688.
- 89Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang, Joule 2017, 1, 371–382.
- 90T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang, X. Meng, E. Bi, X. Yang, L. Han, Adv. Mater. 2019, 31, 1900605.
- 91T. Ye, B. Zhou, F. Zhan, F. Yuan, S. Ramakrishna, D. Golberg, X. Wang, Sol. RRL 2020, 4, 2000014.
- 92Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, Q. Zhao, Nat. Commun. 2016, 7, 10228.
- 93D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 2016, 1, 16142.
- 94L. Zuo, H. Guo, D. W. deQuilettes, S. Jariwala, N. De Marco, S. Dong, R. DeBlock, D. S. Ginger, B. Dunn, M. Wang, Y. Yang, Sci. Adv. 2017, 3, e1700106.
- 95M. Kim, S. G. Motti, R. Sorrentino, A. Petrozza, Energy Environ. Sci. 2018, 11, 2609–2619.
- 96B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Nat. Commun. 2018, 9, 1076.
- 97C. Yi, C. Liu, K. Wen, X.-K. Liu, H. Zhang, Y. Yu, N. Fan, F. Ji, C. Kuang, B. Ma, C. Tu, Y. Zhang, C. Xue, R. Li, F. Gao, W. Huang, J. Wang, Nat. Commun. 2020, 11, 4736.
- 98N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, N.-G. Park, J. Am. Chem. Soc. 2015, 137, 8696–8699.
- 99Y. Rong, S. Venkatesan, R. Guo, Y. Wang, J. Bao, W. Li, Z. Fan, Y. Yao, Nanoscale 2016, 8, 12892–12899.
- 100K. C. Tang, P. You, F. Yan, Sol. RRL 2018, 2, 1800075.
- 101W. Tang, Y. Chen, J. Yang, R. Yuan, Y. Lv, Q. Ma, Y. Wu, P. Zhang, W.-H. Zhang, J. Power Sources 2021, 482, 228965.
- 102T. Moot, A. R. Marshall, L. M. Wheeler, S. N. Habisreutinger, T. H. Schloemer, C. C. Boyd, D. R. Dikova, G. F. Pach, A. Hazarika, M. D. McGehee, H. J. Snaith, J. M. Luther, Adv. Energy Mater. 2020, 10, 1903365.
- 103G. Zhou, J. Wu, Y. Zhao, Y. Li, J. Shi, Y. Li, H. Wu, D. Li, Y. Luo, Q. Meng, ACS Appl. Mater. Interfaces 2018, 10, 9503–9513.
- 104T. Matsui, J.-Y. Seo, M. Saliba, S. M. Zakeeruddin, M. Grätzel, Adv. Mater. 2017, 29, 1606258.
- 105S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H. J. Snaith, Nature 2019, 571, 245–250.
- 106Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P. K. Madhu, A. B. Morales-Vilches, P. K. Nayak, S. Bai, F. Gao, C. R. M. Grovenor, M. B. Johnston, J. G. Labram, J. R. Durrant, J. M. Ball, B. Wenger, B. Stannowski, H. J. Snaith, Science 2020, 369, 96–102.
- 107W. Hui, L. Chao, H. Lu, F. Xia, Q. Wei, Z. Su, T. Niu, L. Tao, B. Du, D. Li, Y. Wang, H. Dong, S. Zuo, B. Li, W. Shi, X. Ran, P. Li, H. Zhang, Z. Wu, C. Ran, L. Song, G. Xing, X. Gao, J. Zhang, Y. Xia, Y. Chen, W. Huang, Science 2021, 371, 1359–1364.
- 108J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508–3576.
- 109D. T. Moore, K. W. Tan, H. Sai, K. P. Barteau, U. Wiesner, L. A. Estroff, Chem. Mater. 2015, 27, 3197–3199.
- 110W. Zhang, X. Liu, B. He, Z. Gong, J. Zhu, Y. Ding, H. Chen, Q. Tang, ACS Appl. Mater. Interfaces 2020, 12, 4540–4548.
- 111X. Wang, X. Ran, X. Liu, H. Gu, S. Zuo, W. Hui, H. Lu, B. Sun, X. Gao, J. Zhang, Y. Xia, Y. Chen, W. Huang, Angew. Chem. Int. Ed. 2020, 59, 13354–13361; Angew. Chem. 2020, 132, 13456–13463.
- 112L. Chao, Y. Xia, B. Li, G. Xing, Y. Chen, W. Huang, Chem 2019, 5, 995–1006.
- 113D. Huang, P. Xie, Z. Pan, H. Rao, X. Zhong, J. Mater. Chem. A 2019, 7, 22420–22428.
- 114J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, J. Liu, F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G. Teeter, D. Zhao, M. M. Al-Jassim, M. F. A. M. van Hest, M. C. Beard, S. E. Shaheen, J. J. Berry, Y. Yan, K. Zhu, Science 2019, 364, 475–479.
- 115H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W. R. Tress, F. T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C. E. Avalos, B. I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, M. Grätzel, Science 2020, 370, eabb8985.
- 116J. Zhang, Z. Wang, A. Mishra, M. Yu, M. Shasti, W. Tress, D. J. Kubicki, C. E. Avalos, H. Lu, Y. Liu, B. I. Carlsen, A. Agarwalla, Z. Wang, W. Xiang, L. Emsley, Z. Zhang, M. Grätzel, W. Guo, A. Hagfeldt, Joule 2020, 4, 222–234.
- 117M. Qin, K. Tse, T. Lau, Y. Li, C. Su, G. Yang, J. Chen, J. Zhu, U. Jeng, G. Li, H. Chen, X. Lu, Adv. Mater. 2019, 31, 1901284.
- 118G. E. Eperon, K. H. Stone, L. E. Mundt, T. H. Schloemer, S. N. Habisreutinger, S. P. Dunfield, L. T. Schelhas, J. J. Berry, D. T. Moore, ACS Energy Lett. 2020, 5, 1856–1864.
- 119Z. Li, F. Zhou, Q. Wang, L. Ding, Z. Jin, Nano Energy 2020, 71, 104634.
- 120L. Chao, T. Niu, W. Gao, C. Ran, L. Song, Y. Chen, W. Huang, Adv. Mater. 2021, 33, 2005410.
- 121Z. Saki, M. M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Energy Environ. Sci. 2021, https://doi.org/10.1039/D1EE02018H.
- 122H. S. Jung, G. S. Han, N.-G. Park, M. J. Ko, Joule 2019, 3, 1850–1880.
- 123D. Yang, R. Yang, S. Priya, S. Liu, Angew. Chem. Int. Ed. 2019, 58, 4466–4483; Angew. Chem. 2019, 131, 4512–4530.
- 124H. Li, W. Zhang, Chem. Rev. 2020, 120, 9835–9950.
- 125R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu, Y. Yang, Nat. Photonics 2021, 15, 411–425.
- 126J. H. Heo, F. Zhang, C. Xiao, S. J. Heo, J. K. Park, J. J. Berry, K. Zhu, S. H. Im, Joule 2021, 5, 481–494.
- 127Y. Fan, J. Fang, X. Chang, M.-C. Tang, D. Barrit, Z. Xu, Z. Jiang, J. Wen, H. Zhao, T. Niu, D.-M. Smilgies, S. Jin, Z. Liu, E. Q. Li, A. Amassian, S. Liu, K. Zhao, Joule 2019, 3, 2485–2502.
- 128X. Chang, J. Fang, Y. Fan, T. Luo, H. Su, Y. Zhang, J. Lu, L. Tsetseris, T. D. Anthopoulos, S. Liu, K. Zhao, Adv. Mater. 2020, 32, 2001243.
- 129X. Liu, Y. Xiao, Q. Zeng, J. Jiang, Y. Li, J. Phys. Chem. Lett. 2019, 10, 6382–6388.
- 130Z. Wang, A. K. Baranwal, M. Akmal kamarudin, P. Zhang, G. Kapil, T. Ma, S. Hayase, Nano Energy 2019, 66, 104180.
- 131R. Chen, Y. Hui, B. Wu, Y. Wang, X. Huang, Z. Xu, P. Ruan, W. Zhang, F. Cheng, W. Zhang, J. Yin, J. Li, N. Zheng, J. Mater. Chem. A 2020, 8, 9597–9606.
- 132J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C.-C. Chueh, H.-L. Yip, Z. Zhu, A. K. Y. Jen, Nat. Commun. 2020, 11, 177.