Mediated Inner-Sphere Electron Transfer Induces Homogeneous Reduction of CO2 via Through-Space Electronic Conjugation**
Correction(s) for this article
-
Corrigendum: Mediated Inner-Sphere Electron Transfer Induces Homogeneous Reduction of CO2 via Through-Space Electronic Conjugation
- Volume 61Issue 25Angewandte Chemie International Edition
- First Published online: June 10, 2022
Shelby L. Hooe
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
These authors contributed equally to this work.
Search for more papers by this authorJuan J. Moreno
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
These authors contributed equally to this work.
Search for more papers by this authorAmelia G. Reid
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
Search for more papers by this authorEmma N. Cook
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
Search for more papers by this authorCorresponding Author
Charles W. Machan
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
Search for more papers by this authorShelby L. Hooe
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
These authors contributed equally to this work.
Search for more papers by this authorJuan J. Moreno
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
These authors contributed equally to this work.
Search for more papers by this authorAmelia G. Reid
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
Search for more papers by this authorEmma N. Cook
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
Search for more papers by this authorCorresponding Author
Charles W. Machan
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319 USA
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv.14165951.v1.).
Graphical Abstract
Through-space electronic conjugation between a redox mediator and molecular Cr complex enables emergent co-electrocatalytic activity for the electrochemical reduction of carbon dioxide to carbon monoxide. In the reduced forms, the aromatic portions interact through a combination of dispersion forces, π conjugation, and weak coordination of the sulfone to Cr.
Abstract
The electrocatalytic reduction of CO2 is an appealing method for converting renewable energy sources into value-added chemical feedstocks. We report a co-electrocatalytic system for the reduction of CO2 to CO comprised of a molecular Cr complex and dibenzothiophene-5,5-dioxide (DBTD) as a redox mediator, which achieves high activity (TOF=1.51–2.84×105 s−1) and quantitative selectivity. Under aprotic or protic conditions, DBTD produces a co-electrocatalytic response with 1 by coordinating trans to the site of CO2 binding and mediating electron transfer from the electrode with quantitative efficiency for CO. This assembly is reliant on through-space electronic conjugation between the π frameworks of DBTD and the bpy fragment of the catalyst ligand, with contributions from dispersive interactions and weak sulfone coordination.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202109645-sup-0001-misc_information.pdf10.1 MB | Supporting Information |
anie202109645-sup-0001-SI.xyz262.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. L. DuBois, Inorg. Chem. 2014, 53, 3935–3960;
- 1bB. Das, A. Thapper, S. Ott, S. B. Colbran, Sustainable Energy Fuels 2019, 3, 2159–2175;
- 1cV. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, Maycock, M. Tignor, T. Waterfield, IPCC Report, World Meterological Organization, Geneva, Switzerland, 2018.
- 2
- 2aA. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621–6658;
- 2bM. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709–1742;
- 2cA. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983–1994;
- 2dR. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631–4701;
- 2eN. W. Kinzel, C. Werlé, W. Leitner, Angew. Chem. Int. Ed. 2021, 60, 11628–11686; Angew. Chem. 2021, 133, 11732–11792.
- 3
- 3aG. Jacobs, B. H. Davis, in Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, The Royal Society of Chemistry, 2010, pp. 95–124;
10.1039/9781849732260-00095 Google Scholar
- 3bZ. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998;
- 3cE. Alper, O. Yuksel Orhan, Petroleum 2017, 3, 109–126;
10.1016/j.petlm.2016.11.003 Google Scholar
- 3dA. S. Agarwal, E. Rode, N. Sridhar, D. Hill, in Handbook of Climate Change Mitigation and Adaptation (Eds.: W.-Y. Chen, T. Suzuki, M. Lackner), Springer New York, New York, 2014, pp. 1–40.
10.1007/978-1-4614-6431-0_89-1 Google Scholar
- 4
- 4aJ. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631–675;
- 4bE. E. Benson, C. P. Kubiak, A. J. Sathrum, J. M. Smieja, Chem. Soc. Rev. 2009, 38, 89–99;
- 4cC. W. Machan, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2021,
https://doi.org/10.1016/B1978-1010-1012-820206-820207.800063-820209.
10.1016/B1978-1010-1012-820206-820207.800063-820209 Google Scholar
- 5F. Melin, P. Hellwig, Chem. Rev. 2020, 120, 10244–10297.
- 6P. T. Smith, S. Weng, C. J. Chang, Inorg. Chem. 2020, 59, 9270–9278.
- 7
- 7aC. W. Anson, S. Ghosh, S. Hammes-Schiffer, S. S. Stahl, J. Am. Chem. Soc. 2016, 138, 4186–4193;
- 7bI. Landa-Medrano, I. Lozano, N. Ortiz-Vitoriano, I. Ruiz de Larramendi, T. Rojo, J. Mater. Chem. A 2019, 7, 8746–8764;
- 7cZ. Liang, Y.-C. Lu, J. Am. Chem. Soc. 2016, 138, 7574–7583;
- 7dC. W. Anson, S. S. Stahl, J. Am. Chem. Soc. 2017, 139, 18472–18475;
- 7eS. L. Hooe, E. N. Cook, A. G. Reid, C. W. Machan, Chem. Sci. 2021, 12, 9733–9741;
- 7fM. J. Chalkley, T. J. Del Castillo, B. D. Matson, J. C. Peters, J. Am. Chem. Soc. 2018, 140, 6122–6129;
- 7gM. J. Chalkley, P. Garrido-Barros, J. C. Peters, Science 2020, 369, 850–854;
- 7hJ. Derosa, P. Garrido-Barros, J. C. Peters, J. Am. Chem. Soc. 2021, 143, 9303–9307.
- 8
- 8aJ. Li, P. Shen, Z. Zhao, Z. Tang Ben, CCS Chem. 2019, 1, 181–196;
- 8bY. Morisaki, Y. Chujo, Polym. Chem. 2011, 2, 1249–1257;
- 8cM. Bai, J. Liang, L. Xie, S. Sanvito, B. Mao, S. Hou, J. Chem. Phys. 2012, 136, 104701;
- 8dY. Morisaki, Y. Chujo, Angew. Chem. Int. Ed. 2006, 45, 6430–6437; Angew. Chem. 2006, 118, 6580–6587.
- 9M. Breysse, G. Djega-Mariadassou, S. Pessayre, C. Geantet, M. Vrinat, G. Pérot, M. Lemaire, Catal. Today 2003, 84, 129–138.
- 10E. W. Tsai, L. Throckmorton, R. McKellar, M. Baar, M. Kluba, D. S. Marynick, K. Rajeshwar, A. L. Ternay, J. Electroanal. Chem. Interfacial Electrochem. 1986, 210, 45–67.
- 11
- 11aS. L. Hooe, J. M. Dressel, D. A. Dickie, C. W. Machan, ACS Catal. 2020, 10, 1146–1151;
- 11bJ. J. Moreno, S. L. Hooe, C. W. Machan, Inorg. Chem. 2021, 60, 3635–3650.
- 12
- 12aH. Chen, O. Simoska, K. Lim, M. Grattieri, M. Yuan, F. Dong, Y. S. Lee, K. Beaver, S. Weliwatte, E. M. Gaffney, S. D. Minteer, Chem. Rev. 2020, 120, 12903–12993;
- 12bG. Boschloo, A. Hagfeldt, Acc. Chem. Res. 2009, 42, 1819–1826.
- 13J.-M. Savéant, C. Costentin, Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry, Wiley, Hoboken, 2019.
10.1002/9781119292364 Google Scholar
- 14
- 14aE. V. Dikarev, R. Y. Becker, E. Block, Z. Shan, R. C. Haltiwanger, M. A. Petrukhina, Inorg. Chem. 2003, 42, 7098–7105;
- 14bF. A. Cotton, T. R. Felthouse, Inorg. Chem. 1981, 20, 2703–2708.
- 15A. W. Nichols, S. Chatterjee, M. Sabat, C. W. Machan, Inorg. Chem. 2018, 57, 2111–2121.
- 16R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1995.
- 17
- 17aI. Garcia-Yoldi, J. S. Miller, J. J. Novoa, J. Phys. Chem. A 2007, 111, 8020–8027;
- 17bI. Garcia-Yoldi, J. S. Miller, J. J. Novoa, Phys. Chem. Chem. Phys. 2008, 10, 4106–4109;
- 17cF. Mota, J. S. Miller, J. J. Novoa, J. Am. Chem. Soc. 2009, 131, 7699–7707;
- 17dM. Kertesz, Chem. Eur. J. 2019, 25, 400–416.
- 18E. Lyngvi, I. A. Sanhueza, F. Schoenebeck, Organometallics 2015, 34, 805–812.
- 19C. W. Kellett, W. B. Swords, M. D. Turlington, G. J. Meyer, C. P. Berlinguette, Nat. Commun. 2018, 9, 4916.
- 20
- 20aA. J. J. Lennox, J. E. Nutting, S. S. Stahl, Chem. Sci. 2018, 9, 356–361;
- 20bL. Zhu, P. Xiong, Z.-Y. Mao, Y.-H. Wang, X. Yan, X. Lu, H.-C. Xu, Angew. Chem. Int. Ed. 2016, 55, 2226–2229; Angew. Chem. 2016, 128, 2266–2269;
- 20cZ.-J. Wu, H.-C. Xu, Angew. Chem. Int. Ed. 2017, 56, 4734–4738; Angew. Chem. 2017, 129, 4812–4816.
- 21
- 21aM. Kiguchi, T. Takahashi, Y. Takahashi, Y. Yamauchi, T. Murase, M. Fujita, T. Tada, S. Watanabe, Angew. Chem. Int. Ed. 2011, 50, 5708–5711; Angew. Chem. 2011, 123, 5826–5829.