Electrochemical Potential-Driven High-Throughput Molecular Electronic and Spintronic Devices: From Molecules to Applications
Ritu Gupta
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorPriyajit Jash
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorPradeep Sachan
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorAkhtar Bayat
Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, 33400 Talence, France
Search for more papers by this authorVikram Singh
Department of Chemistry and National Science Research Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
Search for more papers by this authorCorresponding Author
Prakash Chandra Mondal
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorRitu Gupta
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorPriyajit Jash
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorPradeep Sachan
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorAkhtar Bayat
Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, 33400 Talence, France
Search for more papers by this authorVikram Singh
Department of Chemistry and National Science Research Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
Search for more papers by this authorCorresponding Author
Prakash Chandra Mondal
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016 India
Search for more papers by this authorGraphical Abstract
This Review describes recent advances in the electrochemical potential-driven preparation of nanometric molecular films of various molecules on technologically relevant substrates, including non-magnetic and magnetic electrodes to investigate the stimuli-responsive charge and spin transport phenomena. We hope to encourage the design of a facile and efficient route for molecular optoelectronic and flexible electronic applications.
Abstract
Molecules are fascinating candidates for constructing tunable and electrically conducting devices by the assembly of either a single molecule or an ensemble of molecules between two electrical contacts followed by current-voltage (I-V) analysis, which is often termed “molecular electronics”. Recently, there has been also an upsurge of interest in spin-based electronics or spintronics across the molecules, which offer additional scope to create ultrafast responsive devices with less power consumption and lower heat generation using the intrinsic spin property rather than electronic charge. Researchers have been exploring this idea of utilizing organic molecules, organometallics, coordination complexes, polymers, and biomolecules (proteins, enzymes, oligopeptides, DNA) in integrating molecular electronics and spintronics devices. Although several methods exist to prepare molecular thin-films on suitable electrodes, the electrochemical potential-driven technique has emerged as highly efficient. In this Review we describe recent advances in the electrochemical potential driven growth of nanometric various molecular films on technologically relevant substrates, including non-magnetic and magnetic electrodes to investigate the stimuli-responsive charge and spin transport phenomena.
Conflict of interest
The authors declare no conflict of interest.
References
- 1G. E. Moore, Proc. IEEE 1965, 86, 82–85.
- 2S. Kumar, M. Merelli, W. Danowski, P. Rudolf, B. L. Feringa, R. C. Chiechi, Adv. Mater. 2019, 31, 1807831.
- 3N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M. A. Ratner, A. Nitzan, J. F. Stoddart, X. Guo, Nat. Rev. Phys. 2019, 1, 211–230.
- 4A. Coskun, J. M. Spruell, G. Barin, W. R. Dichtel, A. H. Flood, Y. Y. Botros, J. F. Stoddart, Chem. Soc. Rev. 2012, 41, 4827.
- 5T. R. Nelson, A. J. White, J. A. Bjorgaard, A. E. Sifain, Y. Zhang, B. Nebgen, S. Fernandez-Alberti, D. Mozyrsky, A. E. Roitberg, S. Tretiak, Chem. Rev. 2020, 120, 2215–2287.
- 6P. T. Mathew, F. Fang, Engineering 2018, 4, 760–771.
- 7J. Chen, S. J. Wezenberg, B. L. Feringa, Chem. Commun. 2016, 52, 6765–6768.
- 8M. R. Wasielewski, M. D. E. Forbes, N. L. Frank, K. Kowalski, G. D. Scholes, J. Yuen-Zhou, M. A. Baldo, D. E. Freedman, R. H. Goldsmith, T. Goodson, et al., Nat. Rev. Chem. 2020, 4, 490–504.
- 9L. Wang, G. Nan, X. Yang, Q. Peng, Q. Li, Z. Shuai, Chem. Soc. Rev. 2010, 39, 423–434.
- 10U. Pischel, Aust. J. Chem. 2010, 63, 148.
- 11J. S. Lindsey, D. F. Bocian, Acc. Chem. Res. 2011, 44, 638–650.
- 12A. Gaita-Ariño, F. Luis, S. Hill, E. Coronado, Nat. Chem. 2019, 11, 301–309.
- 13H. Yoo, C.-H. Kim, J. Mater. Chem. C 2021, 9, 4092–4104.
- 14P. C. Mondal, V. Singh, M. Zharnikov, Acc. Chem. Res. 2017, 50, 2128–2138.
- 15L. Heinke, C. Wöll, Adv. Mater. 2019, 31, 1806324.
- 16L. S. Xie, G. Skorupskii, M. Dincǎ, Chem. Rev. 2020, 120, 8536–8580.
- 17C. Shipps, H. R. Kelly, P. J. Dahl, S. M. Yi, D. Vu, D. Boyer, C. Glynn, M. R. Sawaya, D. Eisenberg, V. S. Batista, et al., Proc. Natl. Acad. Sci. USA 2021, 118, e2014139118.
- 18M. Souto, K. Strutyński, M. Melle-Franco, J. Rocha, Chem. Eur. J. 2020, 26, 10912–10935.
- 19P. Sachan, P. C. Mondal, Analyst 2020, 145, 1563–1582.
- 20V. Singh, P. C. Mondal, A. K. Singh, M. Zharnikov, Coord. Chem. Rev. 2017, 330, 144–163.
- 21D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Chem. Rev. 2016, 116, 4318–4440.
- 22M. L. Perrin, E. Burzurí, H. S. J. van der Zant, Chem. Soc. Rev. 2015, 44, 902–919.
- 23B. Fabre, Chem. Rev. 2016, 116, 4808–4849.
- 24C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, A. M. Mujsce, J. Am. Chem. Soc. 1990, 112, 4301–4306.
- 25J. R. Heath, M. A. Ratner, Phys. Today 2003, 56, 43–49.
- 26S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, 2005.
10.1017/CBO9781139164313 Google Scholar
- 27R. Gupta, P. Jash, P. C. Mondal, J. Mater. Chem. C 2021, https://doi.org/10.1039/D1TC01283E.
10.1039/D1TC01283E Google Scholar
- 28D. Hetemi, V. Noël, J. Pinson, Biosensors 2020, 10, 4.
- 29J. Pinson, F. Podvorica, Chem. Soc. Rev. 2005, 34, 429.
- 30T. Menanteau, E. Levillain, T. Breton, Chem. Mater. 2013, 25, 2905–2909.
- 31J. C. Lacroix, Curr. Opin. Electrochem. 2018, 7, 153–160.
- 32H. Kim, D. Segal, J. Chem. Phys. 2017, 146, 164702.
- 33P. R. Bueno, J. J. Davis, Chem. Soc. Rev. 2020, 49, 7505–7515.
- 34M. L. Perrin, R. Eelkema, J. Thijssen, F. C. Grozema, H. S. J. van der Zant, Phys. Chem. Chem. Phys. 2020, 22, 12849–12866.
- 35M. L. Perrin, E. Galan, R. Eelkema, F. Grozema, J. M. Thijssen, H. S. J. van der Zant, J. Phys. Chem. C 2015, 119, 5697–5702.
- 36J. K. Sowa, J. A. Mol, G. A. D. Briggs, E. M. Gauger, J. Chem. Phys. 2018, 149, 154112.
- 37A. Migliore, A. Nitzan, J. Am. Chem. Soc. 2013, 135, 9420–9432.
- 38E. Papp, D. P. Jelenfi, M. T. Veszeli, G. Vattay, Biomolecules 2019, 9, 599.
- 39J. K. Sowa, R. A. Marcus, J. Chem. Phys. 2021, 154, 034110.
- 40J. O. Thomas, B. Limburg, J. K. Sowa, K. Willick, J. Baugh, G. A. D. Briggs, E. M. Gauger, H. L. Anderson, J. A. Mol, Nat. Commun. 2019, 10, 4628.
- 41P. Lapham, L. Vilà-Nadal, L. Cronin, V. P. Georgiev, J. Phys. Chem. C 2021, 125, 3599–3610.
- 42J. C. Cuevas, E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific Publishing, Singapore, 2010.
10.1142/7434 Google Scholar
- 43R. L. McCreery, H. Yan, A. J. Bergren, Phys. Chem. Chem. Phys. 2013, 15, 1065–1081.
- 44N. Amdursky, D. Marchak, L. Sepunaru, I. Pecht, M. Sheves, D. Cahen, Adv. Mater. 2014, 26, 7142–7161.
- 45D. Taherinia, C. D. Frisbie, J. Phys. Chem. C 2016, 120, 6442–6449.
- 46H. Yan, A. J. Bergren, R. McCreery, M. L. Della Rocca, P. Martin, P. Lafarge, J. C. Lacroix, Proc. Natl. Acad. Sci. USA 2013, 110, 5326–5330.
- 47Y. Han, C. A. Nijhuis, Chem. Asian J. 2020, 15, 3752–3770.
- 48M. Galperin, M. A. Ratner, A. Nitzan, J. Phys. Condens. Matter 2007, 19, 103201.
- 49P. Reddy, S.-Y. Jang, R. A. Segalman, A. Majumdar, Science 2007, 315, 1568–1571.
- 50F. Chen, N. J. Tao, Acc. Chem. Res. 2009, 42, 429–438.
- 51C. Joachim, M. A. Ratner, Proc. Natl. Acad. Sci. USA 2005, 102, 8801–8808.
- 52A. Nitzan, Science 2003, 300, 1384–1389.
- 53M. T. M. Koper, R. A. Van Santen, S. A. Wasileski, M. J. Weaver, J. Chem. Phys. 2000, 113, 4392–4407.
- 54M. Galperin, M. A. Ratner, A. Nitzan, J. Phys. Chem. C 2004, 121, 11965–11979.
- 55I. Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 2010, 132, 4131–4140.
- 56L. Sepunaru, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 2011, 133, 2421–2423.
- 57N. Amdursky, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 2013, 135, 6300–6306.
- 58K. Garg, S. Raichlin, T. Bendikov, I. Pecht, M. Sheves, D. Cahen, ACS Appl. Mater. Interfaces 2018, 10, 41599–41607.
- 59K. S. Kumar, R. R. Pasula, S. Lim, C. A. Nijhuis, Adv. Mater. 2016, 28, 1824–1830.
- 60J. G. Simmons, J. Appl. Phys. 1963, 34, 2581–2590.
- 61A. P. Bonifas, R. L. McCreery, Nat. Nanotechnol. 2010, 5, 612–617.
- 62M. H. Garner, H. Li, Y. Chen, T. A. Su, Z. Shangguan, D. W. Paley, T. Liu, F. Ng, H. Li, S. Xiao, et al., Nature 2018, 558, 415–419.
- 63G. Breit, E. Wigner, Phys. Rev. 1936, 49, 519–531.
- 64Y. Zang, S. Ray, E. D. Fung, A. Borges, M. H. Garner, M. L. Steigerwald, G. C. Solomon, S. Patil, L. Venkataraman, J. Am. Chem. Soc. 2018, 140, 13167–13170.
- 65X. Yao, X. Sun, F. Lafolet, J.-C. Lacroix, Nano Lett. 2020, 20, 6899–6907.
- 66J. A. Fereiro, X. Yu, I. Pecht, M. Sheves, J. C. Cuevas, D. Cahen, Proc. Natl. Acad. Sci. USA 2018, 115, E4577–E4583.
- 67M. Supur, S. K. Saxena, R. L. McCreery, J. Am. Chem. Soc. 2020, 142, 11658–11662.
- 68U. M. Tefashe, Q. Van Nguyen, F. Lafolet, J.-C. Lacroix, R. L. McCreery, J. Am. Chem. Soc. 2017, 139, 7436–7439.
- 69A. Migliore, P. Schiff, A. Nitzan, Phys. Chem. Chem. Phys. 2012, 14, 13746.
- 70A. Migliore, A. Nitzan, ACS Nano 2011, 5, 6669–6685.
- 71A. Nitzan, Annu. Rev. Phys. Chem. 2001, 52, 681–750.
- 72A. W. Ghosh, P. S. Damle, S. Datta, A. Nitzan, MRS Bull. 2004, 29, 391–395.
- 73S. Ho Choi, B. Kim, C. D. Frisbie, Science 2008, 320, 1482–1486.
- 74S. H. Choi, C. Risko, M. C. R. Delgado, B. Kim, J.-L. Brédas, C. D. Frisbie, J. Am. Chem. Soc. 2010, 132, 4358–4368.
- 75R. L. McCreery, H. Yan, A. J. Bergren, Phys. Chem. Chem. Phys. 2013, 15, 1065–1081.
- 76A. Vilan, D. Cahen, Chem. Rev. 2017, 117, 4624–4666.
- 77J. M. Buriak, Chem. Rev. 2002, 102, 1271–1308.
- 78T. Gupta, P. C. Mondal, A. Kumar, Y. L. Jeyachandran, M. Zharnikov, Adv. Funct. Mater. 2013, 23, 4227–4235.
- 79M. Lahav, M. E. van der Boom, Adv. Mater. 2018, 30, 1706641.
- 80F. Ishiwari, G. Nascimbeni, E. Sauter, H. Tago, Y. Shoji, S. Fujii, M. Kiguchi, T. Tada, M. Zharnikov, E. Zojer, et al., J. Am. Chem. Soc. 2019, 141, 5995–6005.
- 81M. P. Stewart, F. Maya, D. V. Kosynkin, S. M. Dirk, J. J. Stapleton, C. L. McGuiness, D. L. Allara, J. M. Tour, J. Am. Chem. Soc. 2004, 126, 370–378.
- 82D. Bélanger, J. Pinson, Chem. Soc. Rev. 2011, 40, 3995–4048.
- 83X. Lefèvre, O. Segut, P. Jégou, S. Palacin, B. Jousselme, Chem. Sci. 2012, 3, 1662–1671.
- 84V. R. Gonçales, J. Lian, S. Gautam, R. D. Tilley, J. J. Gooding, Annu. Rev. Anal. Chem. 2020, 13, 135–158.
- 85A. Bergren, K. Harris, F. Deng, R. Mccreery, J. Phys. Condens. Matter 2008, 20, 374117.
- 86O. Rousseau, S. M. Cherif, Y. Roussigne, M. Belmeguenai, P. Martin, J.-C. Lacroix, M. L. Della Rocca, P. Lafarge, C. Barraud, IEEE Trans. Magn. 2017, 53, 2801205.
- 87B. D. Assresahegn, T. Brousse, D. Bélanger, Carbon 2015, 92, 362–381.
- 88L. Cao, G. Fang, Y. Wang, Langmuir 2017, 33, 980–987.
- 89A. Wang, J. Song, D. Jia, W. Yu, L. Long, Y. Song, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. Shao, et al., Inorg. Chem. Front. 2016, 3, 296–305.
- 90Z. Liu, Science 2003, 302, 1543–1545.
- 91S. Himori, S. Nishitani, T. Sakata, Langmuir 2019, 35, 3701–3709.
- 92C. Cao, Y. Zhang, C. Jiang, M. Qi, G. Liu, ACS Appl. Mater. Interfaces 2017, 9, 5031–5049.
- 93S. Ranganathan, I. Steidel, F. Anariba, R. L. McCreery, Nano Lett. 2001, 1, 491–494.
- 94A. J. Bergren, R. L. McCreery, Annu. Rev. Anal. Chem. 2011, 4, 173–195.
- 95R. L. McCreery, Chem. Rev. 2008, 108, 2646–2687.
- 96J. Ossowski, G. Nascimbeni, T. Zaba, E. Verwüster, J. Rysz, A. Terfort, M. Zharnikov, E. Zojer, P. Cyganik, J. Phys. Chem. C 2017, 121, 28031–28042.
- 97A. Bayat, J. C. Lacroix, R. L. McCreery, J. Am. Chem. Soc. 2016, 138, 12287–12296.
- 98S. R. Smith, R. L. McCreery, Adv. Electron. Mater. 2018, 4, 1800093.
- 99R. L. McCreery, A. J. Bergren, Adv. Mater. 2009, 21, 4303–4322.
- 100C. Vericat, M. E. Vela, G. Corthey, E. Pensa, E. Cortés, M. H. Fonticelli, F. Ibañez, G. E. Benitez, P. Carro, R. C. Salvarezza, RSC Adv. 2014, 4, 27730–27754.
- 101W. Hong, D. Z. Manrique, P. Moreno-García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292–2304.
- 102L. J. O'Driscoll, X. Wang, M. Jay, A. S. Batsanov, H. Sadeghi, C. J. Lambert, B. J. Robinson, M. R. Bryce, Angew. Chem. Int. Ed. 2020, 59, 882–889; Angew. Chem. 2020, 132, 892–899.
- 103A. Antušek, M. Blaško, M. Urban, P. Noga, D. Kisić, M. Nenadović, D. Lončarević, Z. Rakočević, Phys. Chem. Chem. Phys. 2017, 19, 28897–28906.
- 104D. Jiang, B. Sumpter, S. Dai, J. Am. Chem. Soc. 2006, 128, 6030–6031.
- 105S. Gam-Derouich, M. N. Nguyen, A. Madani, N. Maouche, P. Lang, C. Perruchot, M. M. Chehimi, Surf. Interface Anal. 2010, 42, 1050–1056.
- 106L. Laurentius, S. R. Stoyanov, S. Gusarov, A. Kovalenko, R. Du, G. P. Lopinski, M. T. McDermott, ACS Nano 2011, 5, 4219–4227.
- 107A. A. L. Ahmad, B. Workie, A. A. Mohamed, Surfaces 2020, 3, 182–196.
- 108R. L. McCreery, U. Viswanathan, R. Prasad Kalakodimi, A. M. Nowak, Faraday Discuss. 2006, 131, 33–43.
- 109R. L. McCreery, J. Wu, R. Prasad Kalakodimi, Phys. Chem. Chem. Phys. 2006, 8, 2572.
- 110S. J. Carey, W. Zhao, C. T. Campbell, Surf. Sci. 2018, 676, 9–16.
- 111L. Vast, O. Rochez, L. Azoulay, A. Fonseca, J. B. Nagy, G. Deniau, S. Palacin, J. Delhalle, Z. Mekhalif, J. Nanosci. Nanotechnol. 2007, 7, 3404–3410.
- 112A. M. Mazzone, R. Rizzoli, Modell. Simul. Mater. Sci. Eng. 2007, 15, 523–533.
- 113S. Descroix, G. Hallais, C. Lagrost, J. Pinson, Electrochim. Acta 2013, 106, 172–180.
- 114C. Combellas, F. Kanoufi, J. Pinson, F. I. Podvorica, J. Am. Chem. Soc. 2008, 130, 8576–8577.
- 115Q. Van Nguyen, P. Martin, D. Frath, M. L. Della Rocca, F. Lafolet, S. Bellinck, P. Lafarge, J.-C. Lacroix, J. Am. Chem. Soc. 2018, 140, 10131–10134.
- 116H. Yan, A. J. Bergren, R. L. McCreery, J. Am. Chem. Soc. 2011, 133, 19168–19177.
- 117D. Vuillaume, ChemPlusChem 2019, 84, 1215–1221.
- 118G. D. Kong, S. E. Byeon, S. Park, H. Song, S. Kim, H. J. Yoon, Adv. Electron. Mater. 2020, 6, 1901157.
- 119D. Corzo, G. Tostado-Blázquez, D. Baran, Front. Electron. 2020, 1, 594003.
- 120Z. Lu, J. Zheng, J. Shi, B. F. Zeng, Y. Yang, W. Hong, Z. Q. Tian, Small Methods 2021, 5, 2001034.
- 121A. Morteza Najarian, B. Szeto, U. M. Tefashe, R. L. McCreery, ACS Nano 2016, 10, 8918–8928.
- 122Z. Li, I. Pobelov, B. Han, T. Wandlowski, A. Błaszczyk, M. Mayor, Nanotechnology 2007, 18, 044018.
- 123F. Chen, Z. Huang, N. Tao, Appl. Phys. Lett. 2007, 91, 89–92.
- 124Y. Komoto, S. Fujii, M. Iwane, M. Kiguchi, J. Mater. Chem. C 2016, 4, 8842–8858.
- 125Y. Liu, L. Ornago, M. Carlotti, Y. Ai, M. El Abbassi, S. Soni, A. Asyuda, M. Zharnikov, H. S. J. Van Der Zant, R. C. Chiechi, J. Phys. Chem. C 2020, 124, 22776–22783.
- 126Z. Tan, W. Jiang, C. Tang, L.-C. Chen, L. Chen, J. Liu, Z. Liu, H.-L. Zhang, D. Zhang, W. Hong, CCS Chem. 2021, 3, 929–937.
- 127B. Xu, Science 2003, 301, 1221–1223.
- 128I. Díez-Pérez, J. Hihath, Y. Lee, L. Yu, L. Adamska, M. A. Kozhushner, I. I. Oleynik, N. Tao, Nat. Chem. 2009, 1, 635–641.
- 129F. Chen, J. Hihath, Z. Huang, X. Li, N. J. Tao, Annu. Rev. Phys. Chem. 2007, 58, 535–564.
- 130L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, M. L. Steigerwald, Nature 2006, 442, 904–907.
- 131S. V. Aradhya, L. Venkataraman, Nat. Nanotechnol. 2013, 8, 399–410.
- 132U. M. Tefashe, Q. Van Nguyen, A. Morteza Najarian, F. Lafolet, J.-C. Lacroix, R. L. McCreery, J. Phys. Chem. C 2018, 122, 29028–29038.
- 133P. Chandra Mondal, U. M. Tefashe, R. L. McCreery, J. Am. Chem. Soc. 2018, 140, 7239–7247.
- 134D. D. James, A. Bayat, S. R. Smith, J. C. Lacroix, R. L. McCreery, Nanoscale Horiz. 2018, 3, 45–52.
- 135W. Danowski, F. Castiglioni, A. S. Sardjan, S. Krause, L. Pfeifer, D. Roke, A. Comotti, W. R. Browne, B. L. Feringa, J. Am. Chem. Soc. 2020, 142, 9048–9056.
- 136M. W. H. Hoorens, M. Medved’, A. D. Laurent, M. Di Donato, S. Fanetti, L. Slappendel, M. Hilbers, B. L. Feringa, W. J. Buma, W. Szymanski, Nat. Commun. 2019, 10, 2390.
- 137J. M. Abendroth, D. M. Stemer, B. P. Bloom, P. Roy, R. Naaman, D. H. Waldeck, P. S. Weiss, P. C. Mondal, ACS Nano 2019, 13, 4928–4946.
- 138T. Sendler, K. Luka-Guth, M. Wieser, Lokamani, J. Wolf, M. Helm, S. Gemming, J. Kerbusch, E. Scheer, T. Huhn, et al., Adv. Sci. 2015, 2, 1500017.
- 139D. Kim, H. Jeong, W. T. Hwang, Y. Jang, D. Sysoiev, E. Scheer, T. Huhn, M. Min, H. Lee, T. Lee, Adv. Funct. Mater. 2015, 25, 5918–5923.
- 140Y. Kim, S. G. Bahoosh, D. Sysoiev, T. Huhn, F. Pauly, E. Scheer, Beilstein J. Nanotechnol. 2017, 8, 2606–2614.
- 141D. Kim, H. Jeong, H. Lee, W.-T. Hwang, J. Wolf, E. Scheer, T. Huhn, H. Jeong, T. Lee, Adv. Mater. 2014, 26, 3968–3973.
- 142J. Koo, Y. Jang, L. Martin, D. Kim, H. Jeong, K. Kang, W. Lee, J. Kim, W.-T. Hwang, D. Xiang, et al., ACS Appl. Mater. Interfaces 2019, 11, 11645–11653.
- 143D. Kolarski, A. Sugiyama, T. Rodat, A. Schulte, C. Peifer, K. Itami, T. Hirota, B. L. Feringa, W. Szymanski, Org. Biomol. Chem. 2021, 19, 2312–2321.
- 144I. Hnid, D. Frath, F. Lafolet, X. Sun, J.-C. Lacroix, J. Am. Chem. Soc. 2020, 142, 7732–7736.
- 145A. M. Najarian, R. L. McCreery, ACS Nano 2019, 13, 867–877.
- 146S. Shil, S. Sen, Inorg. Chem. 2020, 59, 16905–16912.
- 147S. Puhl, T. Steenbock, C. Herrmann, J. Heck, Angew. Chem. Int. Ed. 2020, 59, 2407–2413; Angew. Chem. 2020, 132, 2428–2434.
- 148S. Ding, Y. Tian, W. Hu, Nano Res. 2021, https://doi.org/10.1007/s12274-021-3310-6.
10.1007/s12274-021-3310-6 Google Scholar
- 149A. Grizzle, C. D'Angelo, P. Tyagi, AIP Adv. 2021, 11, 015340.
- 150M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 1988, 61, 2472–2475.
- 151G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 1989, 39, 4828–4830.
- 152E. E. Fullerton, J. R. Childress, Proc. IEEE 2016, 104, 1787–1795.
- 153S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, S. N. Piramanayagam, Mater. Today 2017, 20, 530–548.
- 154P. P. Freitas, R. Ferreira, S. Cardoso, Proc. IEEE 2016, 104, 1894–1918.
- 155A. Hirohata, K. Takanashi, J. Phys. D 2014, 47, 193001.
- 156M. Gobbi, M. A. Novak, E. Del Barco, J. Appl. Phys. 2019, 125, 240401.
- 157A. Dahal, M. Batzill, Nanoscale 2014, 6, 2548.
- 158L. Huang, Q. H. Chang, G. L. Guo, Y. Liu, Y. Q. Xie, T. Wang, B. Ling, H. F. Yang, Carbon 2012, 50, 551–556.
- 159V. Corradini, A. Candini, D. Klar, R. Biagi, V. De Renzi, A. Lodi Rizzini, N. Cavani, U. del Pennino, H. Wende, E. Otero, et al., J. Appl. Phys. 2019, 125, 142904.
- 160S. Rajalingam, S. Devillers, J. Dehalle, Z. Mekhalif, Thin Solid Films 2012, 522, 247–253.
- 161Z. Mekhalif, F. Laffineur, N. Couturier, J. Delhalle, Langmuir 2003, 19, 637–645.
- 162T. Matrab, M. Save, B. Charleux, J. Pinson, E. Cabet-deliry, A. Adenier, M. M. Chehimi, M. Delamar, Surf. Sci. 2007, 601, 2357–2366.
- 163R. Naaman, Y. Paltiel, D. H. Waldeck, Nat. Rev. Chem. 2019, 3, 250–260.
- 164P. C. Mondal, C. Fontanesi, D. H. Waldeck, R. Naaman, Acc. Chem. Res. 2016, 49, 2560–2568.
- 165P. C. Mondal, W. Mtangi, C. Fontanesi, Small Methods 2018, 2, 1700313.
- 166R. Torres-Cavanillas, G. Escorcia-Ariza, I. Brotons-Alcázar, R. Sanchis-Gual, P. C. Mondal, L. E. Rosaleny, S. Giménez-Santamarina, M. Sessolo, M. Galbiati, S. Tatay, et al., J. Am. Chem. Soc. 2020, 142, 17572–17580.
- 167P. C. Mondal, N. Kantor-Uriel, S. P. Mathew, F. Tassinari, C. Fontanesi, R. Naaman, Adv. Mater. 2015, 27, 1924–1927.
- 168F. Tassinari, D. Amsallem, B. P. Bloom, Y. Lu, A. Bedi, D. H. Waldeck, O. Gidron, R. Naaman, J. Phys. Chem. C 2020, 124, 20974–20980.
- 169R. J. Brooke, C. Jin, D. S. Szumski, R. J. Nichols, B. W. Mao, K. S. Thygesen, W. Schwarzacher, Nano Lett. 2015, 15, 275–280.