Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals
Dr. Cheng Tang
Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorDr. Yao Zheng
Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorProf. Mietek Jaroniec
Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 USA
Search for more papers by this authorCorresponding Author
Prof. Shi-Zhang Qiao
Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorDr. Cheng Tang
Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorDr. Yao Zheng
Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorProf. Mietek Jaroniec
Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 USA
Search for more papers by this authorCorresponding Author
Prof. Shi-Zhang Qiao
Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorGraphical Abstract
The concept of the electrocatalytic refinery (e-refinery) is an intrinsically sustainable strategy to convert renewable feedstocks and energy sources to transportable fuels and value-added chemicals. This Review describes the concept, fundamentals, and framework of e-refinery processes with some game-changing reactions and innovative catalyst design strategies.
Abstract
Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value-added chemicals. A crucial step in conducting e-refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well-studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e-refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.
Conflict of interest
The authors declare no conflict of interest.
References
- 1Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 2P. Lanzafame, S. Perathoner, G. Centi, S. Gross, E. J. M. Hensen, Catal. Sci. Technol. 2017, 7, 5182–5194.
- 3I. E. Agency, Technology Roadmap—Energy and GHG Reductions in the Chemical Industry via Catalytic Processes, can be found under https://www.iea.org/reports/technology-roadmap-energy-and-ghg-reductions-in-the-chemical-industry-via-catalytic-processes, 2013.
- 4S. Abate, G. Centi, P. Lanzafame, S. Perathoner, J. Energy Chem. 2015, 24, 535–547.
- 5S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16–22.
- 6J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611.
- 7A. J. Martín, J. Pérez-Ramírez, Joule 2019, 3, 2602–2621.
- 8J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, J. K. Nørskov, Nat. Mater. 2017, 16, 70–81.
- 9P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science 2019, 364, eaav3506.
- 10C. Tang, S. Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166–3180.
- 11A. Winiwarter, L. Silvioli, S. B. Scott, K. Enemark-Rasmussen, M. Saric, D. B. Trimarco, P. C. K. Vesborg, P. G. Moses, I. E. L. Stephens, B. Seger, J. Rossmeisl, I. Chorkendorff, Energy Environ. Sci. 2019, 12, 1055–1067.
- 12Y. Lum, J. E. Huang, Z. Y. Wang, M. C. Luo, D. H. Nam, W. R. Leow, B. Chen, J. Wicks, Y. G. C. Li, Y. H. Wang, C. T. Dinh, J. Li, T. T. Zhuang, F. W. Li, T. K. Sham, D. Sinton, E. H. Sargent, Nat. Catal. 2020, 3, 14–22.
- 13M. Duca, M. T. M. Koper in Surface and Interface Science, Vol. 8 (Ed.: K. Wandelt), Wiley-VCH, Weinheim, 2020, pp. 773–890.
- 14V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Nat. Mater. 2017, 16, 57–69.
- 15C. Tang, H. F. Wang, Q. Zhang, Acc. Chem. Res. 2018, 51, 881–889.
- 16Y. Jiao, Y. Zheng, M. T. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060–2086.
- 17S. Nitopi, E. Bertheussen, S. B. Scott, X. Y. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610–7672.
- 18G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith, T. W. Hamann, Chem. Rev. 2020, 120, 5437–5516.
- 19Y. Y. Birdja, E. Perez-Gallent, M. C. Figueiredo, A. J. Gottle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732–745.
- 20J. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430–433.
- 21H. Y. Jin, C. X. Guo, X. Liu, J. L. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S. Z. Qiao, Chem. Rev. 2018, 118, 6337–6408.
- 22A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev. 2018, 118, 2302–2312.
- 23J. C. Siu, N. K. Fu, S. Lin, Acc. Chem. Res. 2020, 53, 547–560.
- 24T. H. Meyer, I. Choi, C. Tian, L. Ackermann, Chem 2020, 6, 2484–2496.
- 25R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631–4701.
- 26Y. Lu, Y. Zou, W. Zhao, M. Wang, C. Li, S. Liu, S. Wang, Nano Select 2020, 1, 135–151.
- 27J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard in Fundamental Concepts in Heterogeneous Catalysis (Eds.: J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard), Wiley, Hoboken, 2014, pp. 155–174.
10.1002/9781118892114.ch11 Google Scholar
- 28Z. J. Zhao, S. H. Liu, S. J. Zha, D. F. Cheng, F. Studt, G. Henkelman, J. L. Gong, Nat. Rev. Mater. 2019, 4, 792–804.
- 29A. D. Handoko, F. X. Wei, Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal. 2018, 1, 922–934.
- 30J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.
- 31J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37–46.
- 32A. J. Medford, A. Vojvodic, J. S. Hummelshoj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J. K. Nørskov, J. Catal. 2015, 328, 36–42.
- 33N. Govindarajan, M. T. M. Koper, E. J. Meijer, F. Calle-Vallejo, ACS Catal. 2019, 9, 4218–4225.
- 34F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. R. Munter, P. G. Moses, E. Skulason, T. Bligaard, J. K. Nørskov, Phys. Rev. Lett. 2007, 99, 016105.
- 35M. B. Ross, P. De Luna, Y. F. Li, C. T. Dinh, D. Kim, P. Yang, E. H. Sargent, Nat. Catal. 2019, 2, 648–658.
- 36A. A. Peterson, J. K. Nørskov, J. Phys. Chem. Lett. 2012, 3, 251–258.
- 37B. You, Y. Sun, Acc. Chem. Res. 2018, 51, 1571–1580.
- 38X. Y. Tian, P. C. Zhao, W. C. Sheng, Adv. Mater. 2019, 31, 1808066.
- 39Y. Zheng, Y. Jiao, A. Vasileff, S. Z. Qiao, Angew. Chem. Int. Ed. 2018, 57, 7568–7579; Angew. Chem. 2018, 130, 7690–7702.
- 40J. Song, C. Wei, Z. F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev. 2020, 49, 2196–2214.
- 41S. Siahrostami, S. J. Villegas, A. H. Bagherzadeh Mostaghimi, S. Back, A. B. Farimani, H. Wang, K. A. Persson, J. Montoya, ACS Catal. 2020, 10, 7495–7511.
- 42C. Xia, S. Back, S. Ringe, K. Jiang, F. H. Chen, X. M. Sun, S. Siahrostami, K. R. Chan, H. T. Wang, Nat. Catal. 2020, 3, 125–134.
- 43S. C. Perry, D. Pangotra, L. Vieira, L. I. Csepei, V. Sieber, L. Wang, C. P. de Leon, F. C. Walsh, Nat. Rev. Chem. 2019, 3, 442–458.
- 44X. Shi, S. Siahrostami, G. L. Li, Y. Zhang, P. Chakthranont, F. Studt, T. F. Jaramillo, X. Zheng, J. K. Nørskov, Nat. Commun. 2017, 8, 701.
- 45D. F. Gao, R. M. Aran-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal. 2019, 2, 198–210.
- 46Y. Zheng, A. Vasileff, X. L. Zhou, Y. Jiao, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 7646–7659.
- 47K. Chan, Nat. Commun. 2020, 11, 5954.
- 48T. T. Zhuang, Y. J. Pang, Z. Q. Liang, Z. Y. Wang, Y. Li, C. S. Tan, J. Li, C. T. Dinh, P. De Luna, P. L. Hsieh, T. Burdyny, H. H. Li, M. X. Liu, Y. H. Wang, F. W. Li, A. Proppe, A. Johnston, D. H. Nam, Z. Y. Wu, Y. R. Zheng, A. H. Ip, H. R. Tan, L. J. Chen, S. H. Yu, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Catal. 2018, 1, 946–951.
- 49Q. Lu, J. Rosen, F. Jiao, ChemCatChem 2015, 7, 38–47.
- 50Z. X. Gu, H. Shen, L. M. Shang, X. M. Lv, L. P. Qian, G. F. Zheng, Small Methods 2018, 2, 1800121.
- 51H. Jung, S. Y. Lee, C. W. Lee, M. K. Cho, D. H. Won, C. Kim, H. S. Oh, B. K. Min, Y. J. Hwang, J. Am. Chem. Soc. 2019, 141, 4624–4633.
- 52Q. Lei, H. Zhu, K. P. Song, N. N. Wei, L. M. Liu, D. L. Zhang, J. Yin, X. L. Dong, K. X. Yao, N. Wang, X. H. Li, B. Davaasuren, J. J. Wang, Y. Han, J. Am. Chem. Soc. 2020, 142, 4213–4222.
- 53H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y. W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, B. Roldan Cuenya, Nat. Commun. 2016, 7, 12123.
- 54X. Zhi, Y. Jiao, Y. Zheng, A. Vasileff, S. Z. Qiao, Nano Energy 2020, 71, 104601.
- 55A. Vasileff, C. C. Xu, Y. Jiao, Y. Zheng, S. Z. Qiao, Chem 2018, 4, 1809–1831.
- 56X. L. Zheng, Y. F. Ji, J. Tang, J. Y. Wang, B. F. Liu, H. G. Steinruck, K. Lim, Y. Z. Li, M. F. Toney, K. Chan, Y. Cui, Nat. Catal. 2019, 2, 55–61.
- 57C. G. Morales-Guio, E. R. Cave, S. A. Nitopi, J. T. Feaster, L. Wang, K. P. Kuhl, A. Jackson, N. C. Johnson, D. N. Abram, T. Hatsukade, C. Hahn, T. F. Jaramillo, Nat. Catal. 2018, 1, 764–771.
- 58D. H. Nam, P. De Luna, A. Rosas-Hernandez, A. Thevenon, F. W. Li, T. Agapie, J. C. Peters, O. Shekhah, M. Eddaoudi, E. H. Sargent, Nat. Mater. 2020, 19, 266–276.
- 59M. S. Xie, B. Y. Xia, Y. W. Li, Y. Yan, Y. H. Yang, Q. Sun, S. H. Chan, A. Fisher, X. Wang, Energy Environ. Sci. 2016, 9, 1687–1695.
- 60P. Schwach, X. L. Pan, X. H. Bao, Chem. Rev. 2017, 117, 8497–8520.
- 61X. G. Meng, X. J. Cui, N. P. Rajan, L. Yu, D. H. Deng, X. H. Bao, Chem 2019, 5, 2296–2325.
- 62J. Jang, K. Z. Shen, C. G. Morales-Guio, Joule 2019, 3, 2589–2593.
- 63S. J. Xie, S. Q. Lin, Q. H. Zhang, Z. Q. Tian, Y. Wang, J. Energy Chem. 2018, 27, 1629–1636.
- 64B. Lee, T. Hibino, J. Catal. 2011, 279, 233–240.
- 65S. D. Senanayake, J. A. Rodriguez, J. F. Weaver, Acc. Chem. Res. 2020, 53, 1488–1497.
- 66L. Arnarson, P. S. Schmidt, M. Pandey, A. Bagger, K. S. Thygesen, I. E. L. Stephens, J. Rossmeisl, Phys. Chem. Chem. Phys. 2018, 20, 11152–11159.
- 67Y. F. Song, Y. H. Zhao, G. Z. Nan, W. Chen, Z. K. Guo, S. G. Li, Z. Y. Tang, W. Wei, Y. H. Sun, Appl. Catal. B 2020, 270, 118888.
- 68M. J. Boyd, A. A. Latimer, C. F. Dickens, A. C. Nielander, C. Hahn, J. K. Nørskov, D. C. Higgins, T. F. Jaramillo, ACS Catal. 2019, 9, 7578–7587.
- 69M. Ma, B. J. Jin, P. Li, M. S. Jung, J. I. Kim, Y. Cho, S. Kim, J. H. Moon, J. H. Park, Adv. Sci. 2017, 4, 1700379.
- 70X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 9664–9672.
- 71E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson, J. K. Nørskov, Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.
- 72J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem 2015, 8, 2180–2186.
- 73A. R. Singh, B. A. Rohr, J. A. Schwalbe, M. Cargnello, K. Chan, T. F. Jaramillo, I. Chorkendorff, J. K. Nørskov, ACS Catal. 2017, 7, 706–709.
- 74M. Kuang, Y. Wang, W. Fang, H. T. Tan, M. X. Chen, J. D. Yao, C. T. Liu, J. W. Xu, K. Zhou, Q. Y. Yan, Adv. Mater. 2020, 32, 2002189.
- 75C. C. Dai, Y. M. Sun, G. Chen, A. C. Fisher, Z. C. J. Xu, Angew. Chem. Int. Ed. 2020, 59, 9418–9422; Angew. Chem. 2020, 132, 9504–9508.
- 76J. Long, S. M. Chen, Y. L. Zhang, C. X. Guo, X. Y. Fu, D. H. Deng, J. P. Xiao, Angew. Chem. Int. Ed. 2020, 59, 9711–9718; Angew. Chem. 2020, 132, 9798–9805.
- 77J. Li, G. M. Zhan, J. H. Yang, F. J. Quan, C. L. Mao, Y. Liu, B. Wang, F. C. Lei, L. J. Li, A. W. M. Chan, L. P. Xu, Y. B. Shi, Y. Du, W. C. Hao, P. K. Wong, J. F. Wang, S. X. Dou, L. Z. Zhang, J. C. Yu, J. Am. Chem. Soc. 2020, 142, 7036–7046.
- 78Y. H. Wang, A. Xu, Z. Y. Wang, L. S. Huang, J. Li, F. W. Li, J. Wicks, M. C. Luo, D. H. Nam, C. S. Tan, Y. Ding, J. W. Wu, Y. W. Lum, C. T. Dinh, D. Sinton, G. F. Zheng, E. H. Sargent, J. Am. Chem. Soc. 2020, 142, 5702–5708.
- 79R. Shi, X. R. Zhang, G. I. N. Waterhouse, Y. X. Zhao, T. R. Zhang, Adv. Energy Mater. 2020, 10, 2000659.
- 80J. M. McEnaney, S. J. Blair, A. C. Nielander, J. A. Schwalbe, D. M. Koshy, M. Cargnello, T. F. Jaramillo, ACS Sustainable Chem. Eng. 2020, 8, 2672–2681.
- 81M. T. Sabatini, L. T. Boulton, H. F. Sneddon, T. D. Sheppard, Nat. Catal. 2019, 2, 10–17.
- 82M. Jouny, J. J. Lv, T. Cheng, B. H. Ko, J. J. Zhu, W. A. Goddard, F. Jiao, Nat. Chem. 2019, 11, 846–851.
- 83Z.-J. Lv, J. Wei, W.-X. Zhang, P. Chen, D. Deng, Z.-J. Shi, Z. Xi, Natl. Sci. Rev. 2020, 7, 1564–1583.
- 84C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li, S. Wang, Nat. Chem. 2020, 12, 717–724.
- 85N. Cao, Y. Quan, A. Guan, C. Yang, Y. Ji, L. Zhang, G. Zheng, J. Colloid Interface Sci. 2020, 577, 109–114.
- 86M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 1995, 387, 143–145.
- 87M. Shibata, N. Furuya, Electrochim. Acta 2003, 48, 3953–3958.
- 88M. Shibata, N. Furuya, J. Electroanal. Chem. 2001, 507, 177–184.
- 89D. Saravanakumar, J. Song, S. Lee, N. H. Hur, W. Shin, ChemSusChem 2017, 10, 3999–4003.
- 90L. C. Grabow, F. Studt, F. Abild-Pedersen, V. Petzold, J. Kleis, T. Bligaard, J. K. Nørskov, Angew. Chem. Int. Ed. 2011, 50, 4601–4605; Angew. Chem. 2011, 123, 4697–4701.
- 91Y. H. Yi, R. Zhang, L. Wang, J. H. Yan, J. L. Zhang, H. C. Guo, ACS Omega 2017, 2, 9199–9210.
- 92W. Taifan, J. Baltrusaitis, Appl. Catal. B 2016, 198, 525–547.
- 93N. Kiratzis, M. Stoukides, J. Catal. 1991, 132, 257–262.
- 94N. Kiratzis, M. Stoukides, J. Electrochem. Soc. 1987, 134, 1925–1929.
- 95A. Raj, R. A. Rudkin, A. Atkinson, J. Electrochem. Soc. 2010, 157, B719–B725.
- 96J. J. Song, Z. F. Huang, L. Pan, K. Li, X. W. Zhang, L. Wang, J. J. Zou, Appl. Catal. B 2018, 227, 386–408.
- 97R. Qin, L. Zhou, P. Liu, Y. Gong, K. Liu, C. Xu, Y. Zhao, L. Gu, G. Fu, N. Zheng, Nat. Catal. 2020, 3, 703–709.
- 98Y. Zhao, C. Liu, C. Wang, X. Chong, B. Zhang, CCS Chem. 2020, 2, 507–515.
- 99C. Mondelli, G. Gözaydın, N. Yan, J. Pérez-Ramírez, Chem. Soc. Rev. 2020, 49, 3764–3782.
- 100B. Xia, Y. Zhang, B. Shi, J. Ran, K. Davey, S. Z. Qiao, Small Methods 2020, 4, 2000063.
- 101L. P. Wu, T. Moteki, A. A. Gokhale, D. W. Flaherty, F. D. Toste, Chem 2016, 1, 32–58.
- 102W. Liu, W. Q. You, Y. T. Gong, Y. L. Deng, Energy Environ. Sci. 2020, 13, 917–927.
- 103U. Sanyal, J. Lopez-Ruiz, A. B. Padmaperuma, J. Holladay, O. Y. Gutierrez, Org. Process Res. Dev. 2018, 22, 1590–1598.
- 104C. J. Bondue, F. Calle-Vallejo, M. C. Figueiredo, M. T. M. Koper, Nat. Catal. 2019, 2, 243–250.
- 105C. J. Bondue, M. T. M. Koper, J. Am. Chem. Soc. 2019, 141, 12071–12078.
- 106S. S. Wong, R. Shu, J. Zhang, H. Liu, N. Yan, Chem. Soc. Rev. 2020, 49, 5510–5560.
- 107M. Garedew, F. Lin, B. Song, T. M. DeWinter, J. E. Jackson, C. M. Saffron, C. H. Lam, P. T. Anastas, ChemSusChem 2020, 13, 4214–4237.
- 108M. Garedew, D. Young-Farhat, S. Bhatia, P. C. Hao, J. E. Jackson, C. M. Saffron, Sustainable Energy Fuels 2020, 4, 1340–1350.
- 109Y. T. Zhou, G. E. Klinger, E. L. Hegg, C. M. Saffron, J. E. Jackson, J. Am. Chem. Soc. 2020, 142, 4037–4050.
- 110Y. L. Zhou, Y. J. Gao, X. Zhong, W. B. Jiang, Y. L. Liang, P. F. Niu, M. C. Li, G. L. Zhuang, X. N. Li, J. G. Wang, Adv. Funct. Mater. 2019, 29, 1807651.
- 111C. H. Lam, C. B. Lowe, Z. L. Li, K. N. Longe, J. T. Rayburn, M. A. Caldwell, C. E. Houdek, J. B. Maguire, C. M. Saffron, D. J. Miller, J. E. Jackson, Green Chem. 2015, 17, 601–609.
- 112Y. Song, S. H. Chia, U. Sanyal, O. Y. Gutierrez, J. A. Lercher, J. Catal. 2016, 344, 263–272.
- 113B. Mahdavi, A. Lafrance, A. Martel, J. Lessard, H. Menard, L. Brossard, J. Appl. Electrochem. 1997, 27, 605–611.
- 114A. G. Sergeev, J. D. Webb, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 20226–20229.
- 115X. D. Chong, C. B. Liu, Y. Huang, C. Q. Huang, B. Zhang, Natl. Sci. Rev. 2020, 7, 285–295.
- 116C. Liu, A. Y. Zhang, D. N. Pei, H. Q. Yu, Environ. Sci. Technol. 2016, 50, 5234–5242.
- 117B. You, X. Liu, N. Jiang, Y. J. Sun, J. Am. Chem. Soc. 2016, 138, 13639–13646.
- 118H. G. Cha, K. S. Choi, Nat. Chem. 2015, 7, 328–333.
- 119B. Garlyyev, S. Xue, J. Fichtner, A. S. Bandarenka, C. Andronescu, ChemSusChem 2020, 13, 2513–2521.
- 120S. Verma, S. Lu, P. J. A. Kenis, Nat. Energy 2019, 4, 466–474.
- 121J. Šebera, H. Hoffmannová, P. Krtil, Z. Samec, S. Záliš, Catal. Today 2010, 158, 29–34.
- 122K. Jin, J. H. Maalouf, N. Lazouski, N. Corbin, D. T. Yang, K. Manthiram, J. Am. Chem. Soc. 2019, 141, 6413–6418.
- 123J. S. Jirkovský, M. Busch, E. Ahlberg, I. Panas, P. Krtil, J. Am. Chem. Soc. 2011, 133, 5882–5892.
- 124M. Simões, S. Baranton, C. Coutanceau, ChemSusChem 2012, 5, 2106–2124.
- 125C. Coutanceau, S. Baranton, R. S. B. Kouame, Front. Chem. 2019, 7, 100.
- 126D. Liu, J. C. Liu, W. Z. Cai, J. Ma, H. B. Yang, H. Xiao, J. Li, Y. J. Xiong, Y. Q. Huang, B. Liu, Nat. Commun. 2019, 10, 1779.
- 127Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M. T. M. Koper, ACS Catal. 2012, 2, 759–764.
- 128M. Sajid, X. B. Zhao, D. H. Liu, Green Chem. 2018, 20, 5427–5453.
- 129S. Barwe, J. Weidner, S. Cychy, D. M. Morales, S. Dieckhofer, D. Hiltrop, J. Masa, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2018, 57, 11460–11464; Angew. Chem. 2018, 130, 11631–11636.
- 130B. You, N. Jiang, X. Liu, Y. Sun, Angew. Chem. Int. Ed. 2016, 55, 9913–9917; Angew. Chem. 2016, 128, 10067–10071.
- 131A. R. Poerwoprajitno, L. Gloag, J. Watt, S. Cychy, S. Cheong, P. V. Kumar, T. M. Benedetti, C. Deng, K.-H. Wu, C. E. Marjo, D. L. Huber, M. Muhler, J. J. Gooding, W. Schuhmann, D.-W. Wang, R. D. Tilley, Angew. Chem. Int. Ed. 2020, 59, 15487–15491; Angew. Chem. 2020, 132, 15615–15620.
- 132Y. Lu, T. Liu, C.-L. Dong, Y.-C. Huang, Y. Li, J. Chen, Y. Zou, S. Wang, Adv. Mater. 2021, 33, 2007056.
- 133Y. Huang, X. Chong, C. Liu, Y. Liang, B. Zhang, Angew. Chem. Int. Ed. 2018, 57, 13163–13166; Angew. Chem. 2018, 130, 13347–13350.
- 134W. Wang, Y. Wang, R. Yang, Q. Wen, Y. Liu, Z. Jiang, H. Li, T. Zhai, Angew. Chem. Int. Ed. 2020, 59, 16974–16981; Angew. Chem. 2020, 132, 17122–17129.
- 135S. Xue, S. Watzele, V. Colic, K. Brandl, B. Garlyyev, A. S. Bandarenka, ChemSusChem 2017, 10, 4812–4816.
- 136Y. Wang, Y.-Y. Xue, L.-T. Yan, H.-P. Li, Y.-P. Li, E.-H. Yuan, M. Li, S.-N. Li, Q.-G. Zhai, ACS Appl. Mater. Interfaces 2020, 12, 24786–24795.
- 137C. Huang, Y. Huang, C. Liu, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2019, 58, 12014–12017; Angew. Chem. 2019, 131, 12142–12145.
- 138Y. S. Wu, Z. Jiang, X. Lu, Y. Y. Liang, H. L. Wang, Nature 2019, 575, 639–642.
- 139H. C. Zhang, X. X. Chang, J. G. G. Chen, W. A. Goddard, B. J. Xu, M. J. Cheng, Q. Lu, Nat. Commun. 2019, 10, 3340.
- 140X. L. Wang, J. F. de Araujo, W. Ju, A. Bagger, H. Schmies, S. Kuhl, J. Rossmeisl, P. Strasser, Nat. Nanotechnol. 2019, 14, 1063–1070.
- 141E. Gomez, B. H. Yan, S. Kattel, J. G. G. Chen, Nat. Rev. Chem. 2019, 3, 638–649.
- 142Z. L. Li, Y. Z. Qu, J. J. Wang, H. L. Liu, M. R. Li, S. Miao, C. Li, Joule 2019, 3, 570–583.
- 143Y. Lum, J. W. Ager, Energy Environ. Sci. 2018, 11, 2935–2944.
- 144W. R. Leow, Y. Lum, A. Ozden, Y. Wang, D.-H. Nam, B. Chen, J. Wicks, T.-T. Zhuang, F. Li, D. Sinton, E. H. Sargent, Science 2020, 368, 1228–1233.
- 145S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, P. Westerhoff, Appl. Catal. B 2018, 236, 546–568.
- 146M. Duca, M. T. M. Koper, Energy Environ. Sci. 2012, 5, 9726–9742.
- 147J. G. Vos, Z. C. Liu, F. D. Speck, N. Perini, W. T. Fu, S. Cherevko, M. T. M. Koper, ACS Catal. 2019, 9, 8561–8574.
- 148T. Lim, G. Y. Jung, J. H. Kim, S. O. Park, J. Park, Y. T. Kim, S. J. Kang, H. Y. Jeong, S. K. Kwak, S. H. Joo, Nat. Commun. 2020, 11, 412.
- 149S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvio, V. Colic, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I. E. L. Stephens, ACS Catal. 2018, 8, 4064–4081.
- 150B. Puértolas, A. K. Hill, T. García, B. Solsona, L. Torrente-Murciano, Catal. Today 2015, 248, 115–127.
- 151R. J. Lewis, G. J. Hutchings, ChemCatChem 2019, 11, 298–308.
- 152V. L. Kornienko, G. A. Kolyagin, G. V. Kornienko, T. A. Kenova, Russ. J. Electrochem. 2020, 56, 405–417.
- 153R. Limvorapitux, L. Y. Chou, A. P. Young, C. K. Tsung, S. T. Nguyen, ACS Catal. 2017, 7, 6691–6698.
- 154C. Tang, Y. Jiao, B. Y. Shi, J. N. Liu, Z. H. Xie, X. Chen, Q. Zhang, S. Z. Qiao, Angew. Chem. Int. Ed. 2020, 59, 9171–9176; Angew. Chem. 2020, 132, 9256–9261.
- 155K. Otsuka, T. Ushiyama, I. Yamanaka, K. Ebitani, J. Catal. 1995, 157, 450–460.
- 156M. S. Saha, Y. Nishiki, T. Furuta, T. Ohsaka, J. Electrochem. Soc. 2004, 151, D93–D97.
- 157Y. P. Zhu, C. X. Guo, Y. Zheng, S. Z. Qiao, Acc. Chem. Res. 2017, 50, 915–923.
- 158P. Chen, Y. Tong, C. Wu, Y. Xie, Acc. Chem. Res. 2018, 51, 2857–2866.
- 159C. Xie, D. Yan, H. Li, S. Du, W. Chen, Y. Wang, Y. Zou, R. Chen, S. Wang, ACS Catal. 2020, 10, 11082–11098.
- 160X. Li, Z. Kou, J. Wang, Small Methods 2021, 5, 2001010.
- 161B. Mohanty, B. K. Jena, S. Basu, ACS Omega 2020, 5, 1287–1295.
- 162Y. X. Wang, H. Y. Su, Y. H. He, L. G. Li, S. Q. Zhu, H. Shen, P. F. Xie, X. B. Fu, G. Y. Zhou, C. Feng, D. K. Zhao, F. Xiao, X. J. Zhu, Y. C. Zeng, M. H. Shao, S. W. Chen, G. Wu, J. Zeng, C. Wang, Chem. Rev. 2020, 120, 12217–12314.
- 163D. Zhao, Z. W. Zhuang, X. Cao, C. Zhang, Q. Peng, C. Chen, Y. D. Li, Chem. Soc. Rev. 2020, 49, 2215–2264.
- 164T. A. A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen, J. Rossmeisl, Joule 2019, 3, 834–845.
- 165H. Li, H. Zhu, S. Zhang, N. Zhang, M. Du, Y. Chai, Small Struct. 2020, 1, 2000033.
- 166Y. Zhao, H. Zhou, X. Zhu, Y. Qu, C. Xiong, Z. Xue, Q. Zhang, X. Liu, F. Zhou, X. Mou, W. Wang, M. Chen, Y. Xiong, X. Lin, Y. Lin, W. Chen, H.-J. Wang, Z. Jiang, L. Zheng, T. Yao, J. Dong, S. Wei, W. Huang, L. Gu, J. Luo, Y. Li, Y. Wu, Nat. Catal. 2021, 4, 134–143.
- 167Y. J. Tong, Chem. Soc. Rev. 2012, 41, 8195–8209.
- 168W. C. Ma, S. J. Xie, T. T. Liu, Q. Y. Fan, J. Y. Ye, F. F. Sun, Z. Jiang, Q. H. Zhang, J. Cheng, Y. Wang, Nat. Catal. 2020, 3, 478–487.
- 169W. C. Ma, S. J. Xie, X. G. Zhang, F. F. Sun, J. C. Kang, Z. Jiang, Q. H. Zhang, D. Y. Wu, Y. Wang, Nat. Commun. 2019, 10, 892.
- 170D. V. Vasilyev, P. J. Dyson, ACS Catal. 2021, 11, 1392–1405.
- 171M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu, D. Ma, ACS Cent. Sci. 2021, 7, 262–273.
- 172Q. Q. Yan, D. X. Wu, S. Q. Chu, Z. Q. Chen, Y. Lin, M. X. Chen, J. Zhang, X. J. Wu, H. W. Liang, Nat. Commun. 2019, 10, 4977.
- 173H. P. Rong, S. F. Ji, J. T. Zhang, D. S. Wang, Y. D. Li, Nat. Commun. 2020, 11, 5884.
- 174C. Costentin, J. M. Saveant, Nat. Rev. Chem. 2017, 1, 0087.
- 175F. W. Li, A. Thevenon, A. Rosas-Hernandez, Z. Y. Wang, Y. L. Li, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. H. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Z. Tao, Z. Q. Liang, M. C. Luo, X. Wang, H. H. Li, C. P. O'Brien, C. S. Tan, D. H. Nam, R. Quintero-Bermudez, T. T. Zhuang, Y. G. C. Li, Z. J. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters, E. H. Sargent, Nature 2020, 577, 509–513.
- 176W. L. Li, F. S. Li, H. Yang, X. J. Wu, P. L. Zhang, Y. Shan, L. C. Sun, Nat. Commun. 2019, 10, 5074.
- 177M. Seo, T. D. Chung, Curr. Opin. Electrochem. 2019, 13, 47–54.
- 178F. Yang, D. H. Deng, X. L. Pan, Q. Fu, X. H. Bao, Natl. Sci. Rev. 2015, 2, 183–201.
- 179P. P. Yang, X. L. Zhang, F. Y. Gao, Y. R. Zheng, Z. Z. Niu, X. X. Yu, R. Liu, Z. Z. Wu, S. Qin, L. P. Chi, Y. Duan, T. Ma, X. S. Zheng, J. F. Zhu, H. J. Wang, M. R. Gao, S. H. Yu, J. Am. Chem. Soc. 2020, 142, 6400–6408.
- 180F. C. Lei, W. Liu, Y. F. Sun, J. Q. Xu, K. T. Liu, L. Liang, T. Yao, B. C. Pan, S. Q. Wei, Y. Xie, Nat. Commun. 2016, 7, 12697.
- 181L. Tang, X. G. Meng, D. H. Deng, X. H. Bao, Adv. Mater. 2019, 31, 1901996.
- 182Y. J. Sa, C. W. Lee, S. Y. Lee, J. Na, U. Lee, Y. J. Hwang, Chem. Soc. Rev. 2020, 49, 6632–6665.
- 183M. Dunwell, Y. S. Yan, B. J. Xu, Curr. Opin. Chem. Eng. 2018, 20, 151–158.
- 184W. W. Xu, Z. Y. Lu, X. M. Sun, L. Jiang, X. Duan, Acc. Chem. Res. 2018, 51, 1590–1598.
- 185J. Snyder, T. Fujita, M. W. Chen, J. Erlebacher, Nat. Mater. 2010, 9, 904–907.
- 186H. K. Lee, C. S. L. Koh, Y. H. Lee, C. Liu, I. Y. Phang, X. M. Han, C. K. Tsung, X. Y. Ling, Sci. Adv. 2018, 4, eaar3208.
- 187D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave, V. Mougel, Nat. Mater. 2019, 18, 1222–1227.
- 188J. B. Zimmerman, P. T. Anastas, H. C. Erythropel, W. Leitner, Science 2020, 367, 397–400.
- 189S. Nellaiappan, N. K. Katiyar, R. Kumar, A. Parui, K. D. Malviya, K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary, K. Biswas, ACS Catal. 2020, 10, 3658–3663.
- 190T. Wang, H. Chen, Z. Z. Yang, J. Y. Liang, S. Dai, J. Am. Chem. Soc. 2020, 142, 4550–4554.
- 191H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater. 2020, 32, 2002435.
- 192P. Gotico, B. Boitrel, R. Guillot, M. Sircoglou, A. Quaranta, Z. Halime, W. Leibl, A. Aukauloo, Angew. Chem. Int. Ed. 2019, 58, 4504–4509; Angew. Chem. 2019, 131, 4552–4557.
- 193L. Grajciar, C. J. Heard, A. A. Bondarenko, M. V. Polynski, J. Meeprasert, E. A. Pidko, P. Nachtigall, Chem. Soc. Rev. 2018, 47, 8307–8348.
- 194D. M. Weekes, D. A. Salvatore, A. Reyes, A. X. Huang, C. P. Berlinguette, Acc. Chem. Res. 2018, 51, 910–918.
- 195F. P. García de Arquer, C. T. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D. H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. G. C. Li, F. W. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton, E. H. Sargent, Science 2020, 367, 661–666.
- 196C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. T. Liang, E. Stavitsk, H. N. Alshareef, H. T. Wang, Nat. Energy 2019, 4, 776–785.
- 197C. Xia, Y. Xia, P. Zhu, L. Fan, H. T. Wang, Science 2019, 366, 226–231.
- 198M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res. 2018, 57, 2165–2177.
- 199O. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. van de Lagemaat, S. O. Kelley, E. H. Sargent, Joule 2018, 2, 825–832.