Production of Hydrogen Peroxide by Photocatalytic Processes
Huilin Hou
Department of Chemical Engineering, Monash University, Clayton, VIC, 3800 Australia
Institute of Materials, Ningbo University of Technology, Ningbo, 315016 P. R. China
Search for more papers by this authorXiangkang Zeng
Department of Chemical Engineering, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorCorresponding Author
Prof. Xiwang Zhang
Department of Chemical Engineering, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorHuilin Hou
Department of Chemical Engineering, Monash University, Clayton, VIC, 3800 Australia
Institute of Materials, Ningbo University of Technology, Ningbo, 315016 P. R. China
Search for more papers by this authorXiangkang Zeng
Department of Chemical Engineering, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorCorresponding Author
Prof. Xiwang Zhang
Department of Chemical Engineering, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorGraphical Abstract
Peroxide from sunlight: The production of H2O2 by photocatalysis is a sustainable process, since it uses water and oxygen as the source materials and solar light as the energy. Encouraging processes have been developed in the last decade for the photocatalytic production of H2O2, and these are discussed in this Review.
Abstract
Hydrogen peroxide (H2O2) has received increasing attention because it is not only a mild and environmentally friendly oxidant for organic synthesis and environmental remediation but also a promising new liquid fuel. The production of H2O2 by photocatalysis is a sustainable process, since it uses water and oxygen as the source materials and solar light as the energy. Encouraging processes have been developed in the last decade for the photocatalytic production of H2O2. In this Review we summarize research progress in the development of processes for the photocatalytic production of H2O2. After a brief introduction emphasizing the superiorities of the photocatalytic generation of H2O2, the basic principles of establishing an efficient photocatalytic system for generating H2O2 are discussed, highlighting the advanced photocatalysts used. This Review is concluded by a brief summary and outlook for future advances in this emerging research field.
Conflict of interest
The authors declare no conflict of interest.
References
- 1J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962–6984; Angew. Chem. 2006, 118, 7116–7139.
- 2K. Sato, M. Aoki, R. Noyori, Science 1998, 281, 1646–1647.
- 3W. Zhan, L. Ji, Z.-m. Ge, X. Wang, R.-t. Li, Tetrahedron 2018, 74, 1527–1532.
- 4M. Ksibi, Chem. Eng. J. 2006, 119, 161–165.
- 5R. N. Gurram, M. Al-Shannag, N. J. Lecher, S. M. Duncan, E. L. Singsaas, M. Alkasrawi, Bioresour. Technol. 2015, 192, 529–539.
- 6K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 2016, 7, 11470.
- 7S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I. E. L. Stephens, ACS Catal. 2018, 8, 4064–4081.
- 8J. García-Serna, T. Moreno, P. Biasi, M. J. Cocero, J.-P. Mikkola, T. O. Salmi, Green Chem. 2014, 16, 2320–2343.
- 9J. K. Edwards, G. J. Hutchings, Angew. Chem. Int. Ed. 2008, 47, 9192–9198; Angew. Chem. 2008, 120, 9332–9338.
- 10Z. Haider, H.-i. Cho, G.-h. Moon, H.-i. Kim, Catal. Today 2019, 335, 55–64.
- 11T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520–7535.
- 12S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372–7408; Angew. Chem. 2013, 125, 7516–7557.
- 13D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C 2005, 6, 186–205.
- 14C. Wang, D. Astruc, Chem. Soc. Rev. 2014, 43, 7188–7216.
- 15S. Fukuzumi, Y. M. Lee, W. Nam, Chemistry 2018, 24, 5016–5031.
- 16J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater. 2017, 29, 1601694.
- 17A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C 2000, 1, 1–21.
- 18M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, D. D. Dionysiou, Appl. Catal. B 2012, 125, 331–349.
- 19
- 19aD. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2012, 2, 599–603;
- 19bL. Zheng, J. Zhang, Y. H. Hu, M. Long, J. Phys. Chem. C 2019, 123, 13693–13701.
- 20V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. 2005, 2627–2629.
- 21V. Maurino, C. Minero, E. Pelizzetti, G. Mariella, A. Arbezzano, F. Rubertelli, Res. Chem. Intermed. 2007, 33, 319–332.
- 22R. Cai, Y. Kubota, A. Fujishima, J. Catal. 2003, 219, 214–218.
- 23M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc. 2010, 132, 7850–7851.
- 24N. Kaynan, B. A. Berke, O. Hazut, R. Yerushalmi, J. Mater. Chem. A 2014, 2, 13822–13826.
- 25X. Xiong, X. Zhang, S. Liu, J. Zhao, Y. Xu, Photochem. Photobiol. Sci. 2018, 17, 1018–1022.
- 26M. Teranishi, R. Hoshino, S. Naya, H. Tada, Angew. Chem. Int. Ed. 2016, 55, 12773–12777; Angew. Chem. 2016, 128, 12965–12969.
- 27L. Zheng, H. Su, J. Zhang, L. S. Walekar, H. Vafaei Molamahmood, B. Zhou, M. Long, Y. H. Hu, Appl. Catal. B 2018, 239, 475–484.
- 28R. Ma, L. Wang, H. Wang, Z. Liu, M. Xing, L. Zhu, X. Meng, F.-S. Xiao, Appl. Catal. B 2019, 244, 594–603.
- 29G.-h. Moon, W. Kim, A. D. Bokare, N.-e. Sung, W. Choi, Energy Environ. Sci. 2014, 7, 4023–4028.
- 30
- 30aX. Zeng, Z. Wang, N. Meng, D. T. McCarthy, A. Deletic, J.-h. Pan, X. Zhang, Appl. Catal. B 2017, 202, 33–41;
- 30bX. Zeng, Z. Wang, G. Wang, T. R. Gengenbach, D. T. McCarthy, A. Deletic, J. Yu, X. Zhang, Appl. Catal. B 2017, 218, 163–173.
- 31Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano, T. Hirai, ACS Catal. 2013, 3, 2222–2227.
- 32Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2014, 53, 13454–13459; Angew. Chem. 2014, 126, 13672–13677.
- 33M. Teranishi, S.-i. Naya, H. Tada, J. Phys. Chem. C 2016, 120, 1083–1088.
- 34B. O. Burek, D. W. Bahnemann, J. Z. Bloh, ACS Catal. 2019, 9, 25–37.
- 35T. Baran, S. Wojtyła, A. Minguzzi, S. Rondinini, A. Vertova, Appl. Catal. B 2019, 244, 303–312.
- 36G. Zuo, B. Li, Z. Guo, L. Wang, F. Yang, W. Hou, S. Zhang, P. Zong, S. Liu, X. Meng, Y. Du, T. Wang, V. A. L. Roy, Catalysts 2019, 9, 623.
- 37L. Wang, S. Cao, K. Guo, Z. Wu, Z. Ma, L. Piao, Chin. J. Catal. 2019, 40, 470–475.
- 38Z. Liu, X. Sheng, D. Wang, X. Feng, iScience 2019, 17, 67–73.
- 39S. Cao, J. Yu, J. Phys. Chem. Lett. 2014, 5, 2101–2107.
- 40
- 40aW.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 2016, 116, 7159–7329;
- 40bB. Zhu, L. Zhang, B. Cheng, J. Yu, Appl. Catal. B 2018, 224, 983–999.
- 41X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76–80.
- 42Y. Xu, M. Kraft, R. Xu, Chem. Soc. Rev. 2016, 45, 3039–3052.
- 43
- 43aS. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 2015, 27, 2150–2176;
- 43bJ. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 2018, 8, 1701503.
- 44Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 2014, 4, 774–780.
- 45M. A. Mohamed, M. Zain, L. J. Minggu, M. B. Kassim, N. A. S. Amin, W. Salleh, M. N. I. Salehmin, M. F. M. Nasir, Z. A. M. Hir, Appl. Catal. B 2018, 236, 265–279.
- 46Q. Xu, L. Zhang, J. Yu, S. Wageh, A. A. Al-Ghamdi, J. M. aroniec, Mater. Today 2018, 21, 1042–1063.
- 47
- 47aY.-P. Zhu, T.-Z. Ren, Z.-Y. Yuan, ACS Appl. Mater. Interfaces 2015, 7, 16850–16856;
- 47bG. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Energy Environ. Sci. 2019, 12, 2080–2147.
- 48Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 2015, 5, 3058–3066.
- 49H. Ou, P. Yang, L. Lin, M. Anpo, X. Wang, Angew. Chem. Int. Ed. 2017, 56, 10905–10910; Angew. Chem. 2017, 129, 11045–11050.
- 50Z. Pei, L. Ding, J. Hu, S. Weng, Z. Zheng, M. Huang, P. Liu, Appl. Catal. B 2013, 142, 736–743.
- 51J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Adv. Funct. Mater. 2018, 28, 1801983.
- 52Y. Li, W. Ho, K. Lv, B. Zhu, S. C. Lee, Appl. Surf. Sci. 2018, 430, 380–389.
- 53J. Goclon, K. Winkler, Appl. Surf. Sci. 2018, 462, 134–141.
- 54S. Li, G. Dong, R. Hailili, L. Yang, Y. Li, F. Wang, Y. Zeng, C. Wang, Appl. Catal. B 2016, 190, 26–35.
- 55Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Appl. Catal. B 2018, 232, 19–25.
- 56X. Li, J. Zhang, F. Zhou, H. Zhang, J. Bai, Y. Wang, H. Wang, Chin. J. Catal. 2018, 39, 1090–1098.
- 57X. Qu, S. Hu, P. Li, Z. Li, H. Wang, H. Ma, W. Li, Diamond Relat. Mater. 2018, 86, 159–166.
- 58L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin, X. Hai, H. Song, J. Ye, Small 2018, 14, 1703142.
- 59Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan, Y. Zhu, Energy Environ. Sci. 2018, 11, 2581–2589.
- 60
- 60aX. Chang, J. Yang, D. Han, B. Zhang, X. Xiang, J. He, Catalysts 2018, 8, 147;
- 60bG. Zuo, S. Liu, L. Wang, H. Song, P. Zong, W. Hou, B. Li, Z. Guo, X. Meng, Y. Du, T. Wang, V. A. L. Roy, Catal. Commun. 2019, 123, 69–72.
- 61J. Cai, J. Huang, S. Wang, J. Iocozzia, Z. Sun, J. Sun, Y. Yang, Y. Lai, Z. Lin, Adv. Mater. 2019, 31, 1806314.
- 62M. Bellardita, E. I. García-López, G. Marcì, I. Krivtsov, J. R. García, L. Palmisano, Appl. Catal. B 2018, 220, 222–233.
- 63
- 63aK. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Appl. Catal. B 2015, 176, 44–52;
- 63bJ. Hu, P. Zhang, W. An, L. Liu, Y. Liang, W. Cui, Appl. Catal. B 2019, 245, 130–142.
- 64S. Hu, X. Qu, P. Li, F. Wang, Q. Li, L. Song, Y. Zhao, X. Kang, Chem. Eng. J. 2018, 334, 410–418.
- 65X. Qu, S. Hu, J. Bai, P. Li, G. Lu, X. Kang, J. Mater. Sci. Technol. 2018, 34, 1932–1938.
- 66G.-h. Moon, M. Fujitsuka, S. Kim, T. Majima, X. Wang, W. Choi, ACS Catal. 2017, 7, 2886–2895.
- 67C. Zhang, J. Bai, L. Ma, Y. Lv, F. Wang, X. Zhang, X. Yuan, S. Hu, Diamond Relat. Mater. 2018, 87, 215–222.
- 68S. Kim, G.-h. Moon, H. Kim, Y. Mun, P. Zhang, J. Lee, W. Choi, J. Catal. 2018, 357, 51–58.
- 69Q. Xin, H. Shah, A. Nawaz, W. Xie, M. Z. Akram, A. Batool, L. Tian, S. U. Jan, R. Boddula, B. Guo, Adv. Mater. 2018, 1804838.
- 70J. Ge, Y. Zhang, S.-J. Park, Materials 2019, 12, 1916.
- 71R. Wang, X. Zhang, F. Li, D. Cao, M. Pu, D. Han, J. Yang, X. Xiang, J. Energy Chem. 2018, 27, 343–350.
- 72S. Zhao, T. Guo, X. Li, T. Xu, B. Yang, X. Zhao, Appl. Catal. B 2018, 224, 725–732.
- 73D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105–1136.
- 74
- 74aD.-L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105–121;
- 74bX.-B. Han, Y.-G. Li, Z.-M. Zhang, H.-Q. Tan, Y. Lu, E.-B. Wang, J. Am. Chem. Soc. 2015, 137, 5486–5493.
- 75X.-B. Han, Z.-M. Zhang, T. Zhang, Y.-G. Li, W. Lin, W. You, Z.-M. Su, E.-B. Wang, J. Am. Chem. Soc. 2014, 136, 5359–5366.
- 76X. J. Kong, Z. Lin, Z. M. Zhang, T. Zhang, W. Lin, Angew. Chem. Int. Ed. 2016, 55, 6411–6416; Angew. Chem. 2016, 128, 6521–6526.
- 77J. Zhou, W. Chen, C. Sun, L. Han, C. Qin, M. Chen, X. Wang, E. Wang, Z. Su, ACS Appl. Mater. Interfaces 2017, 9, 11689–11695.
- 78S. Zhao, X. Zhao, H. Zhang, J. Li, Y. Zhu, Nano Energy 2017, 35, 405–414.
- 79S. Zhao, X. Zhao, S. Ouyang, Y. Zhu, Catal. Sci. Technol. 2018, 8, 1686–1695.
- 80S. Zhao, X. Zhao, J. Catal. 2018, 366, 98–106.
- 81S. Zhao, X. Zhao, Appl. Catal. B 2019, 250, 408–418.
- 82X. Jiang, P. Wang, J. Zhao, J. Mater. Chem. A 2015, 3, 7750–7758.
- 83Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 2016, 6, 7021–7029.
- 84Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, ACS Sustainable Chem. Eng. 2017, 5, 6478–6485.
- 85Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, J. Am. Chem. Soc. 2016, 138, 10019–10025.
- 86Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, ChemCatChem 2018, 10, 2070–2077.
- 87L. Yang, G. Dong, D. L. Jacobs, Y. Wang, L. Zang, C. Wang, J. Catal. 2017, 352, 274–281.
- 88H.-i. Kim, Y. Choi, S. Hu, W. Choi, J.-H. Kim, Appl. Catal. B 2018, 229, 121–129.
- 89Y. Peng, L. Wang, Y. Liu, H. Chen, J. Lei, J. Zhang, Eur. J. Inorg. Chem. 2017, 4797–4802.
- 90J. Bai, Y. Sun, M. Li, L. Yang, J. Li, Diamond Relat. Mater. 2018, 87, 19.
- 91Y. Fu, C. a. Liu, M. Zhang, C. Zhu, H. Li, H. Wang, Y. Song, H. Huang, Y. Liu, Z. Kang, Adv. Energy Mater. 2018, 8, 1802525.
- 92Z. Li, N. Xiong, G. Gu, Dalton Trans. 2019, 48, 182–189.
- 93H. Wang, Y. Guan, S. Hu, Y. Pei, W. Ma, Z. Fan, Nano 2019, 14, 1950023.
- 94J. Tian, T. Wu, D. Wang, Y. Pei, M. Qiao, B. Zong, Catal. Today 2019, 330, 171–178.
- 95Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang, C. Zhou, W. Xiong, W. Wang, M. Cheng, W. Xue, H. Guo, X. Tang, D. He, Appl. Catal. B 2019, 258, 117956.
- 96H. Song, L. Wei, C. Chen, C. Wen, F. Han, J. Catal. 2019, 376, 198–208.
- 97H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 2016, 6, 4976–4982.
- 98W.-C. Hou, Y.-S. Wang, ACS Sustainable Chem. Eng. 2017, 5, 2994–3001.
- 99S. Gogoi, N. Karak, Nano-Micro Lett. 2017, 9, 40.
- 100S. Thakur, T. Kshetri, N. H. Kim, J. H. Lee, J. Catal. 2017, 345, 78–86.
- 101Z. Jiang, L. Wang, J. Lei, Y. Liu, J. Zhang, Appl. Catal. B 2019, 241, 367–374.
- 102
- 102aA. Carné, C. Carbonell, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2011, 40, 291–305;
- 102bZ. Zhang, M. J. Zaworotko, Chem. Soc. Rev. 2014, 43, 5444–5455.
- 103C. G. Oliveri, P. A. Ulmann, M. J. Wiester, C. A. Mirkin, Acc. Chem. Res. 2008, 41, 1618–1629.
- 104R. Kamata, H. Kumagai, Y. Yamazaki, G. Sahara, O. Ishitani, ACS Appl. Mater. Interfaces 2019, 11, 5632–5641.
- 105S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2013, 6, 3756–3764.
- 106Y. Yamada, A. Nomura, T. Miyahigashi, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2013, 117, 3751–3760.
- 107Y. Isaka, S. Kato, D. Hong, T. Suenobu, Y. Yamada, S. Fukuzumi, J. Mater. Chem. A 2015, 3, 12404–12412.
- 108Y. Isaka, Y. Yamada, T. Suenobu, T. Nakagawa, S. Fukuzumi, RSC Adv. 2016, 6, 42041–42044.
- 109A. Tăbăcaru, C. Pettinari, S. Galli, Coord. Chem. Rev. 2018, 372, 1–30.
- 110X. Jiang, B. Yang, Q.-Q. Yang, C.-H. Tung, L.-Z. Wu, Chem. Commun. 2018, 54, 4794–4797.
- 111H. Zhuang, L. Yang, J. Xu, F. Li, Z. Zhang, H. Lin, J. Long, X. Wang, Sci. Rep. 2015, 5, 16947.
- 112J. Xu, Z. Chen, H. Zhang, G. Lin, H. Lin, X. Wang, J. Long, Sci. Bull. 2017, 62, 610–618.
- 113
- 113aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 113bS. Dang, Q.-L. Zhu, Q. Xu, Nat. Rev. Mater. 2017, 3, 17075;
- 113cM. Wen, K. Mori, Y. Kuwahara, T. An, H. Yamashita, Appl. Catal. B 2017, 218, 555–569;
- 113dM. Wen, K. Mori, Y. Kuwahara, T. An, H. Yamashita, Chem. Asian J. 2018, 13, 1767–1779;
- 113eH. Yamashita, K. Mori, Y. Kuwahara, T. Kamegawa, M. Wen, P. Verma, M. Che, Chem. Soc. Rev. 2018, 47, 8072–8096.
- 114X.-P. Wu, L. Gagliardi, D. G. Truhlar, J. Am. Chem. Soc. 2018, 140, 7904–7912.
- 115L.-Y. Wu, Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M. Zhang, M. Zhang, T.-B. Lu, Angew. Chem. Int. Ed. 2019, 58, 9491–9495; Angew. Chem. 2019, 131, 9591–9595.
- 116H. Li, Y. Sun, Z.-Y. Yuan, Y.-P. Zhu, T.-Y. Ma, Angew. Chem. Int. Ed. 2018, 57, 3222–3227; Angew. Chem. 2018, 130, 3276–3281.
- 117S. Wang, X. Wang, Small 2015, 11, 3097–3112.
- 118Y. Isaka, Y. Kondo, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Chem. Commun. 2018, 54, 9270–9273.
- 119Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Angew. Chem. Int. Ed. 2019, 58, 5402–5406; Angew. Chem. 2019, 131, 5456–5460.
- 120Y. Kawase, Y. Isaka, Y. Kuwahara, K. Mori, H. Yamashita, Chem. Commun. 2019, 55, 6743–6746.
- 121Y. L. Wong, J. M. Tobin, Z. Xu, F. Vilela, J. Mater. Chem. A 2016, 4, 18677–18686.
- 122Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater. 2019, 18, 985–993.
- 123K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 2016, 7, 11470.
- 124G. Xu, Y. Liang, F. Chen, J. Mol. Catal. A: Chem. 2016, 420, 66–72.
- 125H.-i. Kim, O. S. Kwon, S. Kim, W. Choi, J.-H. Kim, Energy Environ. Sci. 2016, 9, 1063–1073.
- 126Y. Lu, Y. Huang, Y. Zhang, T. Huang, H. Li, J.-j. Cao, W. Ho, Chem. Eng. J. 2019, 363, 374–382.
Citing Literature
September 28, 2020
Pages 17356-17376