Tricoordinate Nontrigonal Pnictogen-Centered Radical Anions: Isolation, Characterization, and Reactivity
Dr. Manas Kumar Mondal
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Li Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Center of Materials Science and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 China
These authors contributed equally to this work.
Search for more papers by this authorZhongtao Feng
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorShuxuan Tang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorRui Feng
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Yue Zhao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Dr. Gengwen Tan
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Dr. Huapeng Ruan
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xinping Wang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Manas Kumar Mondal
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Li Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Center of Materials Science and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 China
These authors contributed equally to this work.
Search for more papers by this authorZhongtao Feng
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorShuxuan Tang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorRui Feng
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Yue Zhao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Dr. Gengwen Tan
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Dr. Huapeng Ruan
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xinping Wang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorGraphical Abstract
The selective one-electron reduction of nontrigonal R3E compounds (E=P, As, Sb) afforded the first stable tricoordinate pnictogen-centered radical anion salts; the pnictogen atoms retain a planar T-shaped structure. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbital of the pnictogen atom, which is perpendicular to the N3E plane.
Abstract
The search for main-group element-based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element-centered radicals mainly feature a V-shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris-amide ligand. The selective one-electron reduction of R3E afforded the first stable tricoordinate pnictogen-centered radical anion salts; the pnictogen atoms retain planar T-shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3E planes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201910139-sup-0001-misc_information.pdf2.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Salem, C. Rowland, Angew. Chem. Int. Ed. Engl. 1972, 11, 92–111; Angew. Chem. 1972, 84, 86–106;
- 1bW. T. Borden, Diradicals, Wiley-Interscience, New York, 1982;
- 1cA. Rajca, Chem. Rev. 1994, 94, 871–893;
- 1dM. Schmittel, A. Burghart, Angew. Chem. Int. Ed. Engl. 1997, 36, 2550–2589; Angew. Chem. 1997, 109, 2658–2699;
- 1eP. P. Power, Chem. Rev. 2003, 103, 789–809;
- 1fT. Nishinaga, K. Komatsu, Org. Biomol. Chem. 2005, 3, 561–569;
- 1gF. Breher, Coord. Chem. Rev. 2007, 251, 1007–1043;
- 1hR. G. Hicks, Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, Wiley, Hoboken, 2010;
- 1iJ. Hankache, O. S. Wenger, Chem. Rev. 2011, 111, 5138–5178;
- 1jM. Mas-Torrent, N. Crivillers, C. Rovira, J. Veciana, Chem. Rev. 2012, 112, 2506–2527;
- 1kI. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303–349;
- 1lM. Abe, Chem. Rev. 2013, 113, 7011–7088;
- 1mT. Chivers, J. Konu, Comprehensive Inorganic Chemistry II, 2nd ed. ), Elsevier, Amsterdam, 2013, pp. 349–373;
10.1016/B978-0-08-097774-4.00116-9 Google Scholar
- 1nC. D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2013, 4, 3020–3030;
- 1oY. Wang, G. H. Robinson, Inorg. Chem. 2014, 53, 11815–11832;
- 1pN. M. Gallagher, A. Olankitwanit, A. Rajca, J. Org. Chem. 2015, 80, 1291–1298;
- 1qM. Soleilhavoup, G. Bertrand, Acc. Chem. Res. 2015, 48, 256–266;
- 1rZ. Zeng, X. Shi, C. Chi, J. T. Lopez Navarrete, J. Casado, J. Wu, Chem. Soc. Rev. 2015, 44, 6578–6596;
- 1sK. Chandra Mondal, S. Roy, H. W. Roesky, Chem. Soc. Rev. 2016, 45, 1080–1111;
- 1tM. Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2017, 56, 10046–10068; Angew. Chem. 2017, 129, 10180–10203;
- 1uG. Tan, X. Wang, Chin. J. Chem. 2018, 36, 573–586;
- 1vT. Y. Gopalakrishna, W. Zeng, X. Lu, J. Wu, Chem. Commun. 2018, 54, 2186–2199.
- 2M. Gomberg, J. Am. Chem. Soc. 1900, 22, 757–771.
- 3
- 3aD. Leca, L. Fensterbank, E. Lacôte, M. Malacria, Chem. Soc. Rev. 2005, 34, 858–865;
- 3bS. Yamago, Chem. Rev. 2009, 109, 5051–5068.
- 4
- 4aS. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald, R. J. Wiacek, A. Voigt, A. H. Cowley, M. F. Lappert, G. Gundersen, J. A. C. Clyburne, P. P. Power, J. Am. Chem. Soc. 2001, 123, 9045–9053;
- 4bA. Armstrong, T. Chivers, M. Parvez, R. T. Boeré, Angew. Chem. Int. Ed. 2004, 43, 502–505; Angew. Chem. 2004, 116, 508–511;
- 4cS. Ito, M. Kikuchi, M. Yoshifuji, A. J. Arduengo, T. A. Konovalova, L. D. Kispert, Angew. Chem. Int. Ed. 2006, 45, 4341–4345; Angew. Chem. 2006, 118, 4447–4451;
- 4dP. Agarwal, N. A. Piro, K. Meyer, P. Müller, C. C. Cummins, Angew. Chem. Int. Ed. 2007, 46, 3111–3114; Angew. Chem. 2007, 119, 3171–3174;
- 4eS. Ito, J. Miura, N. Morita, M. Yoshifuji, A. J. Arduengo, Angew. Chem. Int. Ed. 2008, 47, 6418–6421; Angew. Chem. 2008, 120, 6518–6521;
- 4fO. Back, B. Donnadieu, M. von Hopffgarten, S. Klein, R. Tonner, G. Frenking, G. Bertrand, Chem. Sci. 2011, 2, 858–861;
- 4gT. Beweries, R. Kuzora, U. Rosenthal, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2011, 50, 8974–8978; Angew. Chem. 2011, 123, 9136–9140;
- 4hS. Ishida, F. Hirakawa, T. Iwamoto, J. Am. Chem. Soc. 2011, 133, 12968–12971;
- 4iS. Demeshko, C. Godemann, R. Kuzora, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2013, 52, 2105–2108; Angew. Chem. 2013, 125, 2159–2162;
- 4jS. Ishida, F. Hirakawa, K. Furukawa, K. Yoza, T. Iwamoto, Angew. Chem. Int. Ed. 2014, 53, 11172–11176; Angew. Chem. 2014, 126, 11354–11358;
- 4kR. Kretschmer, D. A. Ruiz, C. E. Moore, A. L. Rheingold, G. Bertrand, Angew. Chem. Int. Ed. 2014, 53, 8176–8179; Angew. Chem. 2014, 126, 8315–8318;
- 4lA. M. Tondreau, Z. Benkő, J. R. Harmer, H. Grützmacher, Chem. Sci. 2014, 5, 1545–1554;
- 4mA. Hinz, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 668–672; Angew. Chem. 2015, 127, 678–682;
- 4nR. J. Schwamm, J. R. Harmer, M. Lein, C. M. Fitchett, S. Granville, M. P. Coles, Angew. Chem. Int. Ed. 2015, 54, 10630–10633; Angew. Chem. 2015, 127, 10776–10779;
- 4oD. Rottschäfer, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Chem. Eur. J. 2017, 23, 9044–9047;
- 4pC. Ganesamoorthy, C. Helling, C. Wölper, W. Frank, E. Bill, G. E. Cutsail, S. Schulz, Nat. Commun. 2018, 9, 87;
- 4qZ. Li, Y. Hou, Y. Li, A. Hinz, J. R. Harmer, C.-Y. Su, G. Bertrand, H. Grützmacher, Angew. Chem. Int. Ed. 2018, 57, 198–202; Angew. Chem. 2018, 130, 204–208;
- 4rC. Helling, C. Wölper, Y. Schulte, G. E. Cutsail, S. Schulz, Inorg. Chem. 2019, https://doi.org/10.1021/acs.inorgchem.9b01519.
- 5
- 5aO. Back, M. A. Celik, G. Frenking, M. Melaimi, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2010, 132, 10262–10263;
- 5bO. Back, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Nat. Chem. 2010, 2, 369–373;
- 5cR. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2010, 49, 5930–5933; Angew. Chem. 2010, 122, 6066–6069;
- 5dG. Ménard, J. A. Hatnean, H. J. Cowley, A. J. Lough, J. M. Rawson, D. W. Stephan, J. Am. Chem. Soc. 2013, 135, 6446–6449;
- 5eX. Pan, X. Chen, T. Li, Y. Li, X. Wang, J. Am. Chem. Soc. 2013, 135, 3414–3417;
- 5fX. Pan, Y. Su, X. Chen, Y. Zhao, Y. Li, J. Zuo, X. Wang, J. Am. Chem. Soc. 2013, 135, 5561–5564;
- 5gY. Su, X. Zheng, X. Wang, X. Zhang, Y. Sui, X. Wang, J. Am. Chem. Soc. 2014, 136, 6251–6254;
- 5hA. Brückner, A. Hinz, J. B. Priebe, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 7426–7430; Angew. Chem. 2015, 127, 7534–7538;
- 5iX. Pan, X. Wang, Z. Zhang, X. Wang, Dalton Trans. 2015, 44, 15099–15102;
- 5jT. Li, H. Wei, Y. Fang, L. Wang, S. Chen, Z. Zhang, Y. Zhao, G. Tan, X. Wang, Angew. Chem. Int. Ed. 2017, 56, 632–636; Angew. Chem. 2017, 129, 647–651;
- 5kL. Liu, L. L. Cao, Y. Shao, G. Ménard, D. W. Stephan, Chem 2017, 3, 259–267;
- 5lT. Li, G. Tan, C. Cheng, Y. Zhao, L. Zhang, X. Wang, Chem. Commun. 2018, 54, 1493–1496;
- 5mW. Wang, C.-Q. Xu, Y. Fang, Y. Zhao, J. Li, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 9419–9424; Angew. Chem. 2018, 130, 9563–9568;
- 5nM. K. Sharma, D. Rottschäfer, S. Blomeyer, B. Neumann, H.-G. Stammler, M. van Gastel, A. Hinz, R. S. Ghadwal, Chem. Commun. 2019, https://doi.org/10.1039/C9CC04701H.
- 6
- 6aT. Sasamori, E. Mieda, N. Nagahora, K. Sato, D. Shiomi, T. Takui, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh, J. Am. Chem. Soc. 2006, 128, 12582–12588;
- 6bX. Pan, X. Wang, Y. Zhao, Y. Sui, X. Wang, J. Am. Chem. Soc. 2014, 136, 9834–9837;
- 6cT. A. Schaub, E. M. Zolnhofer, D. P. Halter, T. E. Shubina, F. Hampel, K. Meyer, M. Kivala, Angew. Chem. Int. Ed. 2016, 55, 13597–13601; Angew. Chem. 2016, 128, 13795–13799;
- 6dG. Tan, S. Li, S. Chen, Y. Sui, Y. Zhao, X. Wang, J. Am. Chem. Soc. 2016, 138, 6735–6738;
- 6eS.-s. Asami, S. Ishida, T. Iwamoto, K. Suzuki, M. Yamashita, Angew. Chem. Int. Ed. 2017, 56, 1658–1662; Angew. Chem. 2017, 129, 1680–1684;
- 6fY. Fang, L. Zhang, C. Cheng, Y. Zhao, M. Abe, G. Tan, X. Wang, Chem. Eur. J. 2018, 24, 3156–3160.
- 7
- 7aC. A. Tolman, Chem. Rev. 1977, 77, 313–348;
- 7bM. E. van der Boom, D. Milstein, Chem. Rev. 2003, 103, 1759–1792;
- 7cP. Braunstein, Chem. Rev. 2006, 106, 134–159.
- 8K. Lee, A. V. Blake, A. Tanushi, S. M. McCarthy, D. Kim, S. M. Loria, C. M. Donahue, K. D. Spielvogel, J. M. Keith, S. R. Daly, A. T. Radosevich, Angew. Chem. Int. Ed. 2019, 58, 6993–6998; Angew. Chem. 2019, 131, 7067–7072.
- 9Selected examples:
- 9aS. A. Culley, A. J. Arduengo, J. Am. Chem. Soc. 1984, 106, 1164–1165;
- 9bS. A. Culley, A. J. Arduengo, J. Am. Chem. Soc. 1985, 107, 1089–1090;
- 9cC. A. Stewart, R. L. Harlow, A. J. Arduengo, J. Am. Chem. Soc. 1985, 107, 5543–5544;
- 9dA. J. Arduengo, C. A. Stewart, Chem. Rev. 1994, 94, 1215–1237;
- 9eM. B. Kindervater, K. M. Marczenko, U. Werner-Zwanziger, S. S. Chitnis, Angew. Chem. Int. Ed. 2019, 58, 7850–7855; Angew. Chem. 2019, 131, 7932–7937.
- 10Selected examples:
- 10aJ. Cui, Y. Li, R. Ganguly, A. Inthirarajah, H. Hirao, R. Kinjo, J. Am. Chem. Soc. 2014, 136, 16764–16767;
- 10bT. P. Robinson, D. M. De Rosa, S. Aldridge, J. M. Goicoechea, Angew. Chem. Int. Ed. 2015, 54, 13758–13763; Angew. Chem. 2015, 127, 13962–13967;
- 10cA. Brand, W. Uhl, Chem. Eur. J. 2019, 25, 1391–1404.
- 11T. P. Robinson, D. De Rosa, S. Aldridge, J. M. Goicoechea, Chem. Eur. J. 2017, 23, 15455–15465.
- 12J. R. Morton, K. F. Preston, J. Magn. Reson. 1978, 30, 577–582.
- 13Owing to the low yield of compound 2 and its radical anion salt, we did not perform the reaction of [(222-cryptand)K+]2.− with cyclo-S8.
- 14
- 14aT. Chivers, P. J. W. Elder, Chem. Soc. Rev. 2013, 42, 5996–6005;
- 14bR. Steudel, T. Chivers, Chem. Soc. Rev. 2019, 48, 3279–3319.
- 15R. J. Schwamm, M. Lein, M. P. Coles, C. M. Fitchett, J. Am. Chem. Soc. 2017, 139, 16490–16493.
- 16D. Fenske, G. Kräuter, K. Dehnicke, Angew. Chem. Int. Ed. Engl. 1990, 29, 390–391; Angew. Chem. 1990, 102, 420–421.
- 17
- 17aA. Schliephake, H. Fallius, H. Buchkremer-Hermanns, P. Böttcher, Z. Naturforsch. B 1988, 43, 21–24;
- 17bS. Dev, E. Ramli, T. B. Rauchfuss, S. R. Wilson, Inorg. Chem. 1991, 30, 2514–2519.
- 18CCDC 1936151, 1936152, 1936163, 1936154, 1936155, 1936156, 1936157, and 1942819 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.