Ternary CoPtAu Nanoparticles as a General Catalyst for Highly Efficient Electro-oxidation of Liquid Fuels
Dr. Junrui Li
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorSafia Z. Jilani
Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057 USA
Search for more papers by this authorHonghong Lin
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorDr. Xiaoming Liu
Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorKecheng Wei
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorYukai Jia
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 Canada
Search for more papers by this authorDr. Peng Zhang
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 Canada
Search for more papers by this authorDr. Miaofang Chi
Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorDr. YuYe J. Tong
Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057 USA
Search for more papers by this authorDr. Zheng Xi
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorCorresponding Author
Dr. Shouheng Sun
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorDr. Junrui Li
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorSafia Z. Jilani
Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057 USA
Search for more papers by this authorHonghong Lin
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorDr. Xiaoming Liu
Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorKecheng Wei
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorYukai Jia
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 Canada
Search for more papers by this authorDr. Peng Zhang
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 Canada
Search for more papers by this authorDr. Miaofang Chi
Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorDr. YuYe J. Tong
Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057 USA
Search for more papers by this authorDr. Zheng Xi
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorCorresponding Author
Dr. Shouheng Sun
Department of Chemistry, Brown University, Providence, RI, 02912 USA
Search for more papers by this authorGraphical Abstract
Abstract
Efficient electro-oxidation of formic acid, methanol, and ethanol is challenging owing to the multiple chemical reaction steps required to accomplish full oxidation to CO2. Herein, a ternary CoPtAu nanoparticle catalyst system is reported in which Co and Pt form an intermetallic L10-structure and Au segregates on the surface to alloy with Pt. The L10-structure stabilizes Co and significantly enhances the catalysis of the PtAu surface towards electro-oxidation of ethanol, methanol, and formic acid, with mass activities of 1.55 A/mgPt, 1.49 A/mgPt, and 11.97 A/mgPt, respectively in 0.1 m HClO4. The L10-CoPtAu catalyst is also stable, with negligible degradation in mass activities and no obvious Co/Pt/Au composition changes after 10 000 potential cycles. The in situ surface-enhanced infrared absorption spectroscopy study indicates that the ternary catalyst activates the C−C bond more efficiently for ethanol oxidation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201906137-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Chem. Rev. 2004, 104, 4587–4612.
- 2
- 2ahttps://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf;
- 2bJ. Eppinger, K.-W. Huang, ACS Energy Lett. 2017, 2, 188–195.
- 3H. R. Corti, E. R. Gonzalez, Direct alcohol fuel cells: materials, performance, durability and applications, Springer Science & Business Media, Cham, 2013.
- 4Y. Wang, S. Zou, W.-B. Cai, Catalysts 2015, 5, 1507–1534.
- 5
- 5aJ.-H. Choi, K.-J. Jeong, Y. Dong, J. Han, T.-H. Lim, J.-S. Lee, Y.-E. Sung, J. Power Sources 2006, 163, 71–75;
- 5bX. Yu, P. G. Pickup, J. Power Sources 2008, 182, 124–132;
- 5cM. E. Scofield, C. Koenigsmann, L. Wang, H. Liu, S. S. Wong, Energy Environ. Sci. 2015, 8, 350–363;
- 5dS. Stevanović, D. Tripković, V. Tripković, D. Minic, A. Gavrilović, A. Tripković, V. M. Jovanović, J. Phys. Chem. C 2014, 118, 278–289.
- 6
- 6aL. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang, S. Dong, J. Am. Chem. Soc. 2018, 140, 1142–1147;
- 6bY. Liu, D. Li, V. R. Stamenkovic, S. Soled, J. D. Henao, S. Sun, ACS Catal. 2011, 1, 1719–1723.
- 7
- 7aH. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, Electrochim. Acta 2007, 52, 6622–6629;
- 7bW. Du, G. Yang, E. Wong, N. A. Deskins, A. I. Frenkel, D. Su, X. Teng, J. Am. Chem. Soc. 2014, 136, 10862–10865.
- 8W. Chen, J. Kim, S. Sun, S. Chen, Langmuir 2007, 23, 11303–11310.
- 9J. Xu, X. Liu, Y. Chen, Y. Zhou, T. Lu, Y. Tang, J. Mater. Chem. 2012, 22, 23659–23667.
- 10X.-Z. Fu, Y. Liang, S.-P. Chen, J.-D. Lin, D.-W. Liao, Catal. Commun. 2009, 10, 1893–1897.
- 11J. E. Sulaiman, S. Zhu, Z. Xing, Q. Chang, M. Shao, ACS Catal. 2017, 7, 5134–5141.
- 12
- 12aY. Kang, J. B. Pyo, X. Ye, T. R. Gordon, C. B. Murray, ACS Nano 2012, 6, 5642–5647;
- 12bZ. Qi, C. Xiao, C. Liu, T. W. Goh, L. Zhou, J. Am. Chem. Soc. 2017, 139, 4762–4768.
- 13R. Rizo, R. M. Arán-Ais, E. Padgett, D. A. Muller, M. J. s. Lázaro, J. Solla-Gullón, J. M. Feliu, E. Pastor, H. D. Abruña, J. Am. Chem. Soc. 2018, 140, 3791–3797.
- 14
- 14aA. Kowal, M. Li, M. Shao, K. Sasaki, M. B. Vukmirovic, J. Zhang, N. S. Marinkovic, P. Liu, A. I. Frenkel, R. R. Adzic, Nat. Mater. 2009, 8, 325–330;
- 14bH. A. Asiri, A. B. Anderson, J. Electrochem. Soc. 2015, 162, F 115–F122.
- 15
- 15aJ. Li, S. Sharma, X. Liu, Y.-T. Pan, J. S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Zhu, S. Sun, Joule 2019, 3, 1–12;
- 15bQ. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, S. Sun, Nano Lett. 2015, 15, 2468–2473;
- 15cJ. Li, Z. Xi, Y. Pan, J. Spendelow, P. Duchesne, D. Su, Q. Li, C. Yu, Z. Yin, B. Shen, Y. S. Kim, P. Zhang, S. Sun, J. Am. Chem. Soc. 2018, 140, 2926–2932;
- 15dJ. Kim, Y. Lee, S. Sun, J. Am. Chem. Soc. 2010, 132, 4996–4997;
- 15eA. B. Shick, O. N. Mryasov, Phys. Rev. B 2003, 67, 172407;
- 15fD. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y.-H. Chung, H. Kim, J. Am. Chem. Soc. 2015, 137, 15478–15485.
- 16
- 16aP. N. Duchesne, Z. Li, C. P. Deming, V. Fung, X. Zhao, J. Yuan, T. Regier, A. Aldalbahi, Z. Almarhoon, S. Chen, Nat. Mater. 2018, 17, 1033–1039;
- 16bM. Ø. Pedersen, S. Helveg, A. Ruban, I. Stensgaard, E. Lægsgaard, J. K. Nørskov, F. Besenbacher, Surf. Sci. 1999, 426, 395–409;
- 16cM. Li, P. Liu, R. R. Adzic, J. Phys. Chem. Lett. 2012, 3, 3480–3485;
- 16dJ. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. P. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, J. Am. Chem. Soc. 2013, 135, 7985–7991;
- 16eG.-R. Zhang, D. Zhao, Y.-Y. Feng, B. Zhang, D. S. Su, G. Liu, B.-Q. Xu, ACS Nano 2012, 6, 2226–2236.
- 17S. Guo, D. Li, H. Zhu, S. Zhang, N. M. Markovic, V. R. Stamenkovic, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 3465–3468; Angew. Chem. 2013, 125, 3549–3552.
- 18B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71–129.
- 19
- 19aG. Camara, T. Iwasita, J. Electroanal. Chem. 2005, 578, 315–321;
- 19bM. Shao, R. Adzic, Electrochim. Acta 2005, 50, 2415–2422.
- 20D. Y. Chung, K.-J. Lee, Y.-E. Sung, J. Phys. Chem. C 2016, 120, 9028–9035.
- 21A. Kolics, A. Wieckowski, J. Phys. Chem. B 2001, 105, 2588–2595.
- 22A. M. Hofstead-Duffy, D.-J. Chen, S.-G. Sun, Y. J. Tong, J. Mater. Chem. 2012, 22, 5205–5208.
- 23
- 23aJ. Lović, A. Tripković, S. L. Gojković, K. D. Popović, D. Tripković, P. Olszewski, A. Kowal, J. Electroanal. Chem. 2005, 581, 294–302;
- 23bG.-Q. Lu, A. Crown, A. Wieckowski, J. Phys. Chem. B 1999, 103, 9700–9711.
- 24A. Cuesta, J. Am. Chem. Soc. 2006, 128, 13332–13333.
- 25
- 25aW. Zhong, Y. Liu, D. Zhang, J. Phys. Chem. C 2012, 116, 2994–3000;
- 25bM. Neurock, M. Janik, A. Wieckowski, Faraday Discuss. 2009, 140, 363–378;
- 25cY. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, J. Am. Chem. Soc. 2003, 125, 3680–3681.