Pd/PC-Phos-Catalyzed Enantioselective Intermolecular Denitrogenative Cyclization of Benzotriazoles with Allenes and N-Allenamides
Pei-Chao Zhang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorJie Han
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junliang Zhang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438 P. R. China
Search for more papers by this authorPei-Chao Zhang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorJie Han
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junliang Zhang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438 P. R. China
Search for more papers by this authorGraphical Abstract
The first example of an enantioselective denitrogenative cyclization of benzotriazoles with allenes and N-allenamides is enabled using Pd/PC-Phos catalysis, and provides rapid access to optically active 3-methyleneindolines in good yields with high ee values. The method features a general substrate scope, high regioselectivity, and mild reaction conditions. Tf=trifluoromethanesulfonyl.
Abstract
Reported herein is an asymmetric Pd/PC-Phos-catalyzed denitrogenative cyclization of benzotriazoles with allenes and N-allenamides, representing the first example of enantioselective denitrogenative cyclizations of benzotriazoles. A series of optically active 3-methyleneindolines were obtained in good yields with high ee values. The use of inexpensive and readily available starting materials, high regio- and enantioselectivity, a broad substrate scope, mild reaction conditions, no need for base, as well as versatile functionalization of the 3-methyleneindolines make this approach attractive.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201904805-sup-0001-misc_information.pdf11.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected examples of the ring opening of benzotriazoles upon pyrolysis:
- 1aZ. P. Yin, Z. C. Wang, X. F. Wu, Org. Lett. 2017, 19, 6232;
- 1bA. S. Singh, N. Mishra, D. Kumar, V. K. Tiwari, ACS Omega 2017, 2, 5044;
- 1cI. Nakamura, T. Nemoto, N. Shiraiwa, M. Terada, Org. Lett. 2009, 11, 1055;
- 1dH. Al-Awadi, M. R. Ibrahim, N. A. Al-Awadi, Y. A. Ibrahim, J. Heterocycl. Chem. 2008, 45, 723;
- 1eN. A. Al-Awadi, B. J. George, H. H. Dib, M. R. Ibrahim, Y. A. Ibrahim, O. M. E. El-Dusouqui, Tetrahedron 2005, 61, 8257;
- 1fS. J. Barker, R. C. Storr, J. Chem. Soc. Perkin Trans. 1 1990, 485.
- 2For selected examples of the ring opening of benzotriazoles by photolysis, see:
- 2aM. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 902; Angew. Chem. 2017, 129, 921;
- 2bM. Teders, L. Pitzer, S. Buss, F. Glorius, ACS Catal. 2017, 7, 4053;
- 2cN. A. Al-Jalal, M. R. Ibrahim, N. A. Al-Awadi, M. H. Elnagdi, Y. A. Ibrahim, Molecules 2014, 19, 20695;
- 2dJ. K. Dutton, D. P. M. Pleynet, A. P. Johnson, Tetrahedron 1999, 55, 11927;
- 2eE. M. Burgess, R. Caithers, L. McCullagh, J. Am. Chem. Soc. 1968, 90, 1923.
- 3Ring opening of benzotriazoles by a synergistic activating-stabilizing effect:
- 3aY. Wang, Z. Wang, X. Chen, Y. Tang, Org. Chem. Front. 2018, 5, 2815;
- 3bY. H. Wang, Y. H. Li, Y. J. Fan, Z. G. Wang, Y. Tang, Chem. Commun. 2017, 53, 11873;
- 3cY. H. Wang, Y. F. Wu, Y. H. Li, Y. Tang, Chem. Sci. 2017, 8, 3852.
- 4For recent reviews, see:
- 4aJ. L. Mascareñas, I. Varela, F. Lόpez, Acc. Chem. Res. 2019, 52, 465;
- 4bJ. Ye, S. Ma, Acc. Chem. Res. 2014, 47, 989;
- 4cS. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074; Angew. Chem. 2012, 124, 3128;
- 4dS. Ma, Aldrichimica Acta 2007, 40, 91;
- 4eS. Ma, Chem. Rev. 2005, 105, 2829;
- 4fS. Ma, Acc. Chem. Res. 2003, 36, 701;
- 4gF. López, J. L. Mascareñas, Chem. Soc. Rev. 2014, 43, 2904.
- 5N1-selective nucleophilic addition of benzotriazoles to allenes:
- 5aD. Berthold, B. Breit, Org. Lett. 2018, 20, 598; Denitrogenative annulation with allenes:
- 5bM. Yamauchi, M. Morimoto, T. Miura, M. Murakami, J. Am. Chem. Soc. 2010, 132, 54;
- 5cDenitrogenative annulation of 1,2,3,4-benzothiatriazine-1,1(2H)-dioxides with allenes: T. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955; Angew. Chem. 2010, 122, 5075.
- 6
- 6aY. Wang, P.-C. Zhang, X. Di, Qi. Dai, Z.-M. Zhang, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 15905; Angew. Chem. 2017, 129, 16121;
- 6bT.-Y. Lin, C.-Z. Zhu, P.-C. Zhang, Y. Wang, H.-H. Wu, J.-J. Feng, J. Zhang, Angew. Chem. Int. Ed. 2016, 55, 10844; Angew. Chem. 2016, 128, 11002;
- 6cY. Wang, P.-C. Zhang, Y. Liu, F. Xia, J. Zhang, Chem. Sci. 2015, 6, 5564;
- 6dY. Wang, P.-C. Zhang, D. Qian, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 14849; Angew. Chem. 2015, 127, 15062.
- 7
- 7aE. Fattorusso, O. Taglialatela-Scafati, Modern Alkaloids: Structure, Isolation, Synthesis and Biology, Wiley-VCH, Weinheim, 2008;
- 7bG. W. Gribble, Indole Ring Synthesis: From Natural Products to Drug Discovery, Wiley, Hoboken, 2016.
10.1002/9781118695692 Google Scholar
- 8For selected examples using C−H activation strategies, see:
- 8aM. Font, B. Cendόn, A. Seoane, J. L. Mascareñas, M. Gulías, Angew. Chem. Int. Ed. 2018, 57, 8255; Angew. Chem. 2018, 130, 8387;
- 8bX. Wen, Y. Wang, X. P. Zhang, Chem. Sci. 2018, 9, 5082;
- 8cB.-S. Zhang, Y. Li, Y. An, Z. Zhang, C. Liu, X.-G. Wang, Y.-M. Liang, ACS Catal. 2018, 8, 11827;
- 8dS.-S. Chen, M.-S. Wu, Z.-Y. Han, Angew. Chem. Int. Ed. 2017, 56, 6641; Angew. Chem. 2017, 129, 6741;
- 8eL. Yang, R. Melot, M. Neuburger, O. Baudoin, Chem. Sci. 2017, 8, 1344;
- 8fO. Villanueva, N. M. Weldy, S. B. Blakey, C. E. MacBeth, Chem. Sci. 2015, 6, 6672;
- 8gY. He, C. Zhang, M. Fan, Z. Wu, D. Ma, Org. Lett. 2015, 17, 496;
- 8hD. Katayev, M. Nakanishi, T. Bürgi, E. P. Kündig, Chem. Sci. 2012, 3, 1422;
- 8iS. Rousseaux, M. Davi, J. Sofack-Kreutzer, C. Pierre, C. E. Kefalidis, E. Clot, K. Fagnou, O. Baudoin, J. Am. Chem. Soc. 2010, 132, 10706.
- 9For selected examples using heteroannulation, see:
- 9aR. O. Torres-Ochoa, T. Buyck, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2018, 57, 5679; Angew. Chem. 2018, 130, 5781;
- 9bJ. I. Murray, N. J. Flodén, A. Bauer, N. D. Fessner, D. L. L. Dunklemann, O. Bob-Egbe, H. S. Rzepa, T. Bgrgi, J. Richardson, A. C. Spivey, Angew. Chem. Int. Ed. 2017, 56, 5760; Angew. Chem. 2017, 129, 5854;
- 9cK. Saito, T. Akiyama, Angew. Chem. Int. Ed. 2016, 55, 3148; Angew. Chem. 2016, 128, 3200;
- 9dB. W. Turnpenny, S. R. Chemler, Chem. Sci. 2014, 5, 1786;
- 9eR. Miyaji, K. Asano, S. Matsubara, Org. Lett. 2013, 15, 3658;
- 9fQ.-Q. Yang, Q. Wang, J. An, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, Chem. Eur. J. 2013, 19, 8401;
- 9gX.-L. Hou, B.-H. Zheng, Org. Lett. 2009, 11, 1789;
- 9hC. D. Gilmore, K. M. Allan, B. M. Stoltz, J. Am. Chem. Soc. 2008, 130, 1558.
- 10For selected examples using hydrogenation, see:
- 10aY. Duan, L. Li, M.-W. Matsubara Chen, C.-B. Yu, H.-J. Fan, Y.-G. Zhou, J. Am. Chem. Soc. 2014, 136, 7688;
- 10bL. Greb, S. Tamke, J. Paradies, Chem. Commun. 2014, 50, 2318;
- 10cA. Kulkarni, W. Zhou, B. Török, Org. Lett. 2011, 13, 5124;
- 10dR. Kuwano, M. Kashiwabara, Org. Lett. 2006, 8, 2653.
- 11For selected examples using dearomative Heck reactions, see:
- 11aX. Li, B. Zhou, R.-Z. Yang, F.-M. Yang, R.-X. Liang, R.-R. Liu, Y.-X. Jia, J. Am. Chem. Soc. 2018, 140, 13945;
- 11bR.-R. Liu, Y.-G. Wang, Y.-L. Li, B.-B. Huang, R.-X. Liang, Y.-X. Jia, Angew. Chem. Int. Ed. 2017, 56, 7475; Angew. Chem. 2017, 129, 7583;
- 11cK. Douki, H. Ono, T. Taniguchi, J. Shimokawa, M. Kitamura, T. Fukuyama, J. Am. Chem. Soc. 2016, 138, 14578;
- 12For examples by cyclization of 2-iodoaniline with unsaturated hydrocarbons, see:
- 12aS.-S. Chen, J. Meng, Y.-H. Li, Z.-Y. Han, J. Org. Chem. 2016, 81, 9402;
- 12bW. Shu, Q. Yu, S. Ma, Adv. Synth. Catal. 2009, 351, 2807;
- 12cJ. M. Zenner, R. C. Larock, J. Org. Chem. 1999, 64, 7312;
- 12dJ. M. Zenner, R. C. Larock, J. Org. Chem. 1995, 60, 482.
- 13For selected examples by cycloaddition, see:
- 13aK.-M. Jiang, U. Luesakul, S.-Y. Zhao, K. An, N. Muangsin, N. Neamati, Y. Jin, J. Lin, ACS Omega 2017, 2, 3123;
- 13bR. Alam, C. Diner, S. Jonker, L. Eriksson, K. J. Szabó, Angew. Chem. Int. Ed. 2016, 55, 14417; Angew. Chem. 2016, 128, 14629;
- 13cS. Arai, M. Nakajima, A. Nishida, Angew. Chem. Int. Ed. 2014, 53, 5569; Angew. Chem. 2014, 126, 5675;
- 13dQ. Yin, S.-L. You, Chem. Sci. 2011, 2, 1344;
- 13eR. Viswanathan, E. N. Prabhakaran, M. A. Plotkin, J. N. Johnston, J. Am. Chem. Soc. 2003, 125, 163.
- 14For selected examples by rearrangement, see:
- 14aB. Alcaide, P. Almendros, S. Cembellín, T. M. del Campo, A. Muñoz, Chem. Commun. 2016, 52, 6813;
- 14bX. Chen, H. Fan, S. Zhang, C. Yu, W. Wang, Chem. Eur. J. 2016, 22, 716;
- 14cB. Prasad, R. Adepu, A. K. Sharma, M. Pal, Chem. Commun. 2015, 51, 1259;
- 14dG. Zhang, V. J. Catalano, L. Zhang, J. Am. Chem. Soc. 2007, 129, 11358;
- 14eY. Liu, W. W. McWhorter, Jr., J. Am. Chem. Soc. 2003, 125, 4240.
- 15Chiral 2-substituted indolines could be used in the enantioselective hydrogenation:
- 15aK. Saito, H. Miyashita, T. Akiyama, Org. Lett. 2014, 16, 5312;
- 15bC. Pasquier, S. Naili, A. Mortreux, F. Agbossou, L. Pélinski, J. Brocard, J. Eilers, I. Reiners, V. Peper, J. Martens, Organometallics 2000, 19, 5723.
- 16Four types of the dimerization of allenamides:
- 16aW.-F. Zheng, P. P. Bora, G.-J. Sun, Q. Kang, Org. Lett. 2016, 18, 3694;
- 16bX.-X. Li, L.-L. Zhu, W. Zhou, Z. Chen, Org. Lett. 2012, 14, 436;
- 16cE. Bustelo, C. Guerot, A. Hercouet, B. Carboni, L. Toupet, P. H. Dixneuf, J. Am. Chem. Soc. 2005, 127, 11582;
- 16dS. Saito, K. Hirayama, C. Kabuto, Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 10776.
- 17Phosphine compounds do react with diazonium salts:
- 17aA. Roglans, A. Pla-Quintana, M. Moreno-Mañas, Chem. Rev. 2006, 106, 4622;
- 17bS. Yasui, M. Fujii, C. Kawano, Y. Nishimura, A. Ohno, Tetrahedron Lett. 1991, 32, 5601;
- 17cS. Yasui, M. Fujii, C. Kawano, Y. Nishimura, K. Shioji, A. Ohno, J. Chem. Soc. Perkin Trans. 2 1994, 177.
- 18
- 18aY. Wang, Z.-M. Zhang, F. Liu, Y. He, J. Zhang, Org. Lett. 2018, 20, 6403;
- 18bB. Xu, Z.-M. Zhang, S. Xu, B. Liu, Y. Xiao, J. Zhang, ACS Catal. 2017, 7, 210;
- 18cZ.-M. Zhang, B. Xu, S. Xu, H.-H. Wu, J. Zhang, Angew. Chem. Int. Ed. 2016, 55, 6324; Angew. Chem. 2016, 128, 6432;
- 18dM. Chen, Z.-M. Zhang, Z. Yu, H. Qiu, B. Ma, H.-H. Wu, J. Zhang, ACS Catal. 2015, 5, 7488;
- 18eZ.-M. Zhang, P. Chen, W. Li, Y. Niu, X. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 4350; Angew. Chem. 2014, 126, 4439.
- 19
- 19aP.-C. Zhang, Y. Wang, Z.-M. Zhang, J. Zhang, Org. Lett. 2018, 20, 7049;
- 19bH. Hu, Y. Wang, D. Qian, Z.-M. Zhang, L. Liu, J. Zhang, Org. Chem. Front. 2016, 3, 759.
- 20Z.-M. Zhang, B. Xu, Y. Qian, L. Wu, Y. Wu, L. Zhou, Y. Liu, J. Zhang, Angew. Chem. Int. Ed. 2018, 57, 10373; Angew. Chem. 2018, 130, 10530.
- 21L. Wang, M. Chen, P.-C. Zhang, W. Li, J. Zhang, J. Am. Chem. Soc. 2018, 140, 3467.
- 22CCDC 1910858, 1910859, and 1922456 [(R)-3 x, (R)-5 a, Me-3 z] contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 23For general reviews on N-allenamides, see:
- 23aE. Manoni, M. Bandini, Eur. J. Org. Chem. 2016, 3135;
- 23bT. Lu, Z. Lu, Z.-X. Ma, Y. Zhang, R. P. Hsung, Chem. Rev. 2013, 113, 4862;
- 23cL.-L. Wei, H. Xiong, R. P. Hsuang, Acc. Chem. Res. 2003, 36, 773.
- 24For examples of total syntheses of biologically active products with a 3-oxoindoline core, see:
- 24aM. Nakajima, S. Arai, A. Nishida, Angew. Chem. Int. Ed. 2016, 55, 3473; Angew. Chem. 2016, 128, 3534;
- 24bZ. Xu, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2015, 137, 6712;
- 24cA. Karadeolian, M. A. Kerr, Angew. Chem. Int. Ed. 2010, 49, 1133; Angew. Chem. 2010, 122, 1151;
- 24dJ. Lee, J. S. Panek, J. Org. Chem. 2015, 80, 2959;
- 24eS. Han, M. Movassaghi, J. Am. Chem. Soc. 2011, 133, 10768;
- 24fP. S. Baran, E. J. Corey, J. Am. Chem. Soc. 2002, 124, 7904.
- 25F. Yan, H. Liang, J. Song, J. Cui, Q. Liu, S. Liu, P. Wang, Y. Dong, H. Liu, Org. Lett. 2017, 19, 86.
- 26
- 26aD. S. Bohle, Z. Chua, I. Perepichka, ChemPlusChem 2013, 78, 1304;
- 26bM. Uhde, T. Ziegler, Synth. Commun. 2010, 40, 3046;
- 26cX. Àlvarez Micό, T. Ziegler, L. R. Subramanian, Angew. Chem. Int. Ed. 2004, 43, 1400; Angew. Chem. 2004, 116, 1424;
- 26dA. R. Katritzky, F. B. Ji, W. Q. Fan, J. K. Gallos, J. V. Greenhill, R. W. King, P. J. Steel, J. Org. Chem. 1992, 57, 190.