Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet–Triplet Energy Gap via Charge Transfer
Lingjie Sun
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Weijie Hua
Department of Applied Physics, School of Science, Nanjing University of Science and Technology, Nanjing, 210094 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yang Liu
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Guangjun Tian
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004 China
Search for more papers by this authorMingxi Chen
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorDr. Mingxing Chen
Analytical Instrumentation Center, Peking University, Beijing, 100871 China
Search for more papers by this authorDr. Fangxu Yang
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorProf. Shufeng Wang
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871 China
Search for more papers by this authorDr. Xiaotao Zhang
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorProf. Yi Luo
Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Prof. Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorLingjie Sun
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Weijie Hua
Department of Applied Physics, School of Science, Nanjing University of Science and Technology, Nanjing, 210094 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yang Liu
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Guangjun Tian
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004 China
Search for more papers by this authorMingxi Chen
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorDr. Mingxing Chen
Analytical Instrumentation Center, Peking University, Beijing, 100871 China
Search for more papers by this authorDr. Fangxu Yang
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorProf. Shufeng Wang
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871 China
Search for more papers by this authorDr. Xiaotao Zhang
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorProf. Yi Luo
Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Prof. Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorGraphical Abstract
Cocrystals comprising trans-1,2-diphenylethylene (TSB) and 1,2,4,5-tetracyanobenzene (TCNB) display thermally activated delayed fluorescence (TADF). The intermolecular charge transfer nature in cocrystals contributes to a small singlet–triplet energy gap and, together with crystalline state in cocrystals, is responsible for the TADF.
Abstract
Harvesting non-emissive spin-triplet charge-transfer (CT) excitons of organic semiconductors is fundamentally important for increasing the operation efficiency of future devices. Here we observe thermally activated delayed fluorescence (TADF) in a 1:2 CT cocrystal of trans-1,2-diphenylethylene (TSB) and 1,2,4,5-tetracyanobenzene (TCNB). This cocrystal system is characterized by absorption spectroscopy, variable-temperature steady-state and time-resolved photoluminescence spectroscopy, single-crystal X-ray diffraction, and first-principles calculations. These data reveal that intermolecular CT in cocrystal narrows the singlet–triplet energy gap and therefore facilitates reverse intersystem crossing (RISC) for TADF. These findings open up a new way for the future design and development of novel TADF materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201904427-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
- 2J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Köhler, R. H. Friend, Nature 2001, 413, 828.
- 3Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Appl. Phys. Lett. 2005, 86, 071104.
- 4T. Fleetham, G. Li, J. Li, Adv. Mater. 2017, 29, 1601861.
- 5T. Hofbeck, U. Monkowius, H. Yersin, J. Am. Chem. Soc. 2015, 137, 399–404.
- 6M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos, Phys. Rev. B 2003, 68, 075211.
- 7S. Mukherjee, P. Thilagar, Chem. Commun. 2015, 51, 10988–11003.
- 8Y. Gong, G. Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z. Tang, Adv. Mater. 2015, 27, 6195–6201.
- 9J. Yang, X. Gao, Z. Xie, Y. Gong, M. Fang, Q. Peng, Z. Chi, Z. Li, Angew. Chem. Int. Ed. 2017, 56, 15299–15303; Angew. Chem. 2017, 129, 15501–15505.
- 10A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Adv. Mater. 2009, 21, 4802–4806.
- 11Y. Geng, A. D'Aleo, K. Inada, L.-S. Cui, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 16536–16540; Angew. Chem. 2017, 129, 16763–16767.
- 12W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, Y. Ma, Adv. Funct. Mater. 2012, 22, 2797–2803.
- 13S. Zhang, L. Yao, Q. Peng, W. Li, Y. Pan, R. Xiao, Y. Gao, C. Gu, Z. Wang, P. Lu, F. Li, S. Su, B. Yang, Y. Ma, Adv. Funct. Mater. 2015, 25, 1755–1762.
- 14K. Wang, C.-J. Zheng, W. Liu, K. Liang, Y.-Z. Shi, S.-L. Tao, C.-S. Lee, X.-M. Ou, X.-H. Zhang, Adv. Mater. 2017, 29, 1701476.
- 15Y. Sun, Y. Lei, L. Liao, W. Hu, Angew. Chem. Int. Ed. 2017, 56, 10352–10356; Angew. Chem. 2017, 129, 10488–10492.
- 16K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photonics 2012, 6, 253.
- 17L. Sun, W. Zhu, W. Wang, F. Yang, C. Zhang, S. Wang, X. Zhang, R. Li, H. Dong, W. Hu, Angew. Chem. Int. Ed. 2017, 56, 7831–7835; Angew. Chem. 2017, 129, 7939–7943.
- 18W. Zhu, L. Zhu, Y. Zou, Y. Wu, Y. Zhen, H. Dong, H. Fu, Z. Wei, Q. Shi, W. Hu, Adv. Mater. 2016, 28, 5954–5962.
- 19Y. Liu, Q. Zeng, B. Zou, Y. Liu, B. Xu, W. Tian, Angew. Chem. Int. Ed. 2018, 57, 15670–15674; Angew. Chem. 2018, 130, 15896–15900.
- 20S. d'Agostino, F. Grepioni, D. Braga, B. Ventura, Cryst. Growth Des. 2015, 15, 2039–2045.
- 21Y.-L. Lei, Y. Jin, D.-Y. Zhou, W. Gu, X.-B. Shi, L.-S. Liao, S.-T. Lee, Adv. Mater. 2012, 24, 5345–5351.
- 22Y. Wang, W. Zhu, W. Du, X. Liu, X. Zhang, H. Dong, W. Hu, Angew. Chem. Int. Ed. 2018, 57, 3963–3967; Angew. Chem. 2018, 130, 4027–4031.
- 23L. Sun, W. Zhu, F. Yang, B. Li, X. Ren, X. Zhang, W. Hu, Phys. Chem. Chem. Phys. 2018, 20, 6009–6023.
- 24S. K. Park, I. Cho, J. Gierschner, J. H. Kim, J. H. Kim, J. E. Kwon, O. K. Kwon, D. R. Whang, J.-H. Park, B.-K. An, S. Y. Park, Angew. Chem. Int. Ed. 2016, 55, 203–207; Angew. Chem. 2016, 128, 211–215.
- 25M. Zalibera, D. S. Krylov, D. Karagiannis, P.-A. Will, F. Ziegs, S. Schiemenz, W. Lubitz, S. Reineke, A. Savitsky, A. A. Popov, Angew. Chem. Int. Ed. 2018, 57, 277–281; Angew. Chem. 2018, 130, 283–287.
- 26J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, Z. Li, Nat. Commun. 2018, 9, 840.
- 27L. Bian, H. Shi, X. Wang, K. Ling, H. Ma, M. Li, Z. Cheng, C. Ma, S. Cai, Q. Wu, N. Gan, X. Xu, Z. An, W. Huang, J. Am. Chem. Soc. 2018, 140, 10734–10739.
- 28S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, M. J. Frisch, J. Mol. Struct. (THEOCHEM) 1999, 461–462, 1–21.
- 29R. L. Martin, J. Chem. Phys. 2003, 118, 4775–4777.
- 30Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai, B. Z. Tang, Nat. Commun. 2017, 8, 416.
- 31K. Andersson, P. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski, J. Phys. Chem. 1990, 94, 5483–5486.
- 32K. Andersson, P. Malmqvist, B. O. Roos, J. Chem. Phys. 1992, 96, 1218–1226.
- 33P. Malmqvist, B. O. Roos, Chem. Phys. Lett. 1989, 155, 189–194.
- 34J. Fan, L. Cai, L. Lin, C.-K. Wang, Phys. Chem. Chem. Phys. 2017, 19, 29872–29879.
- 35C. J. Chen, R. J. Huang, A. S. Batsanov, P. Pander, Y. T. Hsu, Z. G. Chi, F. B. Dias, M. R. Bryce, Angew. Chem. Int. Ed. 2018, 57, 16407–16411; Angew. Chem. 2018, 130, 16645–16649.