The Role of Organic Synthesis in the Emergence and Development of Antibody–Drug Conjugates as Targeted Cancer Therapies
Correction(s) for this article
-
Corrigendum: The Role of Organic Synthesis in the Emergence and Development of Antibody–Drug Conjugates as Targeted Cancer Therapies
- Volume 60Issue 32Angewandte Chemie International Edition
- pages: 17246-17247
- First Published online: July 26, 2021
Corresponding Author
Prof. Dr. K. C. Nicolaou
Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas, 77005 USA
Search for more papers by this authorDr. Stephan Rigol
Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas, 77005 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. K. C. Nicolaou
Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas, 77005 USA
Search for more papers by this authorDr. Stephan Rigol
Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas, 77005 USA
Search for more papers by this authorDedicated to Professor E. J. Corey on the occasion of his 91st birthday
Graphical Abstract
Magic bullet: The field of antibody–drug conjugates (ADCs) is emerging as one of the frontiers in biomedical research, particularly in the area of cancer treatment. Covering oncological applications, and after a brief history of the emergence of the field of ADCs triggered more than a century ago by Paul Ehrlich's “magic bullet” concept, this Review primarily focuses on chemical synthesis aspects of the field.
Abstract
With a number of antibody–drug conjugates (ADCs) approved for clinical use as targeted cancer therapies and numerous candidates in clinical trials, the field of ADCs is emerging as one of the frontiers in biomedical research, particularly in the area of cancer treatment. Chemists, biologists and clinicians, among other scientists, are partnering their expertise to improve their design, synthesis, efficacy and precision as they strive to advance this paradigm of personalized and targeted medicine to treat cancer patients more effectively and to expand its scope to other indications. Just as Alexander Fleming's penicillin, and the myriad other bioactive natural products that followed its discovery and success in the clinic, ignited a revolution in medicine after the Second World War, so did calicheamicin γ1I, and other highly potent naturally occurring antitumor agents, play a pivotal role in enabling the advent of this new paradigm of “biological-small molecule hybrid” medical intervention. Today there are four clinically approved drugs from the ADC paradigm, Mylotarg, Adcetris, Kadcyla and Besponsa, in order of approval, the first and the last of which carry the same calicheamicin γ1I-derived payload. Covering oncological applications, and after a brief history of the emergence of the field of antibody–drug conjugates triggered more than a century ago by Paul Ehrlich's “magic bullet” concept, this Review is primarily focusing on the chemical synthesis aspects of the ADCs multidisciplinary research enterprise.
Conflict of interest
The authors declare no conflict of interest.
References
- 1P. Ehrlich, Frankfurter Zeitung und Handelsblatt, 4th September 1906, 51, Nr. 244, Zweites Morgenblatt, Feuilleton.
- 2
- 2aP. Ehrlich, Muench. Med. Wochenschr. 1901, 48, 2123–2124;
- 2bP. Ehrlich, Dtsch. Med. Wochenschr. 1901, 27, 865–867;
10.1055/s-0029-1187219 Google ScholarP. Ehrlich, Dtsch. Med. Wochenschr. 1901, 27, 888–891;10.1055/s-0029-1187236 Google ScholarP. Ehrlich, Dtsch. Med. Wochenschr. 1901, 27, 913–916;10.1055/s-0029-1187253 Google Scholar
- 2cP. Ehrlich, J. Morgenroth in Anleitung zu hygienischen Untersuchungen, Vol. 3 (Eds.: ), Verlag der M. Rieger'schen Universitäts-Buchhandlung (G. Himmer), Munich, 1902, pp. 381–394;
- 2dP. Ehrlich, J. Morgenroth in Handbuch der pathogenen Mikroorganismen (Eds.: ), Gustav Fischer Verlag, Jena, 1904, pp. 430–451;
- 2eP. Ehrlich, H. Sachs, Muench. Med. Wochenschr. 1909, 56, 2529–2532; P. Ehrlich, H. Sachs, Muench. Med. Wochenschr. 1909, 56, 2586–2589;
- 2fP. Ehrlich, H. Sachs, Muench. Med. Wochenschr. 1910, 57, 1287–1289.
- 3P. Ehrlich in Beiträge zur experimentellen Pathologie und Chemotherapie, Akademische Verlagsgesellschaft, Leipzig, 1909, pp. 165–202.
- 4
- 4aC. Weigert, Centralbl. f. d. med. Wissensch. Berlin 1871, 9, 609–611;
- 4bC. Weigert, Jahresb. d. schles. Gesellsch. f. vaterl. Cultur 1876, 53, 229–230;
- 4cC. Weigert, Arch. Mikrosk. Anat. 1878, 15, 258–260;
10.1007/BF02933852 Google Scholar
- 4dC. Weigert, Virchows Arch. 1881, 84, 275–315.
10.1007/BF01935339 Google Scholar
- 5P. Ehrlich, Beiträge zur Theorie und Praxis der histologischen Färbung, Dissertation, Leipzig University, Leipzig, 1878.
- 6P. Ehrlich, Proc. R. Soc. London 1900, 66, 424–448.
- 7M. A. Meyers, Happy Accidents: Serendipity in Modern Medical Breakthroughs, Arcade Publishing, New York, 2007, p. 39.
- 8A. Beck, L. Goetsch, C. Dumontet, N. Corvaïa, Nat. Rev. Drug Discovery 2017, 16, 315.
- 9E. Behring, S. Kitasato, Dtsch. Med. Wochenschr. 1890, 16, 1113–1114.
10.1055/s-0029-1207589 Google Scholar
- 10P. Ehrlich, Dtsch. Med. Wochenschr. 1891, 17, 1218–1219.
10.1055/s-0029-1206825 Google Scholar
- 11
- 11aS. I. Hajdu, Cancer 2004, 100, 2048–2051;
- 11bG. B. Faguet, Int. J. Cancer 2015, 136, 2022–2036.
- 12
- 12aA. Karpozilos, N. Pavlidis, Eur. J. Cancer 2004, 40, 2033–2040;
- 12bN. Papavramidou, T. Papavramidis, T. Demetriou, Ann. Surg. Oncol. 2010, 17, 665–667.
- 13L. Jacobs, C. A. Finlayson, Early Diagnosis and Treatment of Cancer: Breast Cancer, Saunders Elsevier, Philadelphia, 2010, p. 186.
- 14J. E. Fenn, R. Udelsman, J. Am. Coll. Surg. 2011, 212, 413–417.
- 15J. G. Bennette, Br. J. Cancer 1952, 6, 377–388.
- 16
- 16aG. B. Elion, E. Burgi, G. H. Hitchings, J. Am. Chem. Soc. 1952, 74, 411–414;
- 16bG. B. Elion, Toxicol. Ind. Health 1986, 2, 1–9.
- 17I. S. Johnson, J. G. Armstrong, M. Gorman, J. P. Burnett, Cancer Res. 1963, 23, 1390–1427.
- 18
- 18aM. Peyrone, Justus Liebigs Ann. Chem. 1845, 55, 205–213;
10.1002/jlac.18450550206 Google Scholar
- 18bS. Dasari, P. Bernard Tchounwou, Eur. J. Pharmacol. 2014, 740, 364–378.
- 19O. M. Friedman, A. M. Seligman, J. Am. Chem. Soc. 1954, 76, 655–658.
- 20
- 20aM. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, A. T. McPhail, J. Am. Chem. Soc. 1971, 93, 2325–2327;
- 20b“Taxol: From Discovery to Therapeutic Use”: M. Suffness in Annu. Rep. Med. Chem., Vol. 28 (Ed.: ), Academic Press, San Diego, 1993, Chapter 32, pp. 305–314.
- 21P. Carmeliet, R. K. Jain, Nature 2000, 407, 249.
- 22B. Nashan, Expert Opin. Invest. Drugs 2002, 11, 1845–1857.
- 23S. A. Wells, Jr, J. E. Gosnell, R. F. Gagel, J. Moley, D. Pfister, J. A. Sosa, M. Skinner, A. Krebs, J. Vasselli, M. Schlumberger, J. Clin. Oncol. 2010, 28, 767–772.
- 24J. B. Zeldis, R. Knight, M. Hussein, R. Chopra, G. Muller, Ann. N. Y. Acad. Sci. 2011, 1222, 76–82.
- 25P. J. Davis, S. A. Mousa in Anti-Angiogenesis Strategies in Cancer Therapeutics (Eds.: ), Academic Press, Boston, 2017, pp. 125–131.
10.1016/B978-0-12-802576-5.00008-5 Google Scholar
- 26
- 26aJ. Zimmermann, E. Buchdunger, H. Mett, T. Meyer, N. B. Lydon, P. Traxler, Bioorg. Med. Chem. Lett. 1996, 6, 1221–1226;
- 26bM. Deininger, E. Buchdunger, B. J. Druker, Blood 2005, 105, 2640–2653.
- 27M. Muhsin, J. Graham, P. Kirkpatrick, Nat. Rev. Cancer 2003, 3, 556.
- 28R. Iyer, G. Fetterly, A. Lugade, Y. Thanavala, Expert Opin. Pharmacother. 2010, 11, 1943–1955.
- 29
- 29aA. Boespflug, L. Thomas, Expert Opin. Pharmacother. 2016, 17, 1005–1011;
- 29bL. Spain, E. Goode, Y. McGovern, K. Joshi, J. Larkin, Expert Opin. Orphan Drugs 2016, 4, 1105–1111.
- 30E. E. Manasanch, R. Z. Orlowski, Nat. Rev. Clin. Oncol. 2017, 14, 417.
- 31D. Chen, M. Frezza, S. Schmitt, J. Kanwar, Q. P. Dou, Curr. Cancer Drug Targets 2011, 11, 239–253.
- 32E. Muchtar, M. A. Gertz, H. Magen, Eur. J. Haematol. 2016, 96, 564–577.
- 33P. G. Richardson, S. Zweegman, E. K. O'Donnell, J. P. Laubach, N. Raje, P. Voorhees, R. H. Ferrari, T. Skacel, S. K. Kumar, S. Lonial, Expert Opin. Pharmacother. 2018, 19, 1949–1968.
- 34
- 34aS. A. Rosenberg, Nat. Rev. Clin. Oncol. 2014, 11, 630;
- 34bY. Yang, J. Clin. Invest. 2015, 125, 3335–3337;
- 34cS. Farkona, E. P. Diamandis, I. M. Blasutig, BMC Med. 2016, 14, 73.
- 35M. J. Keating, A. Dritselis, U. Yasothan, P. Kirkpatrick, Nat. Rev. Drug Discovery 2010, 9, 101.
- 36C. S. Higano, E. J. Small, P. Schellhammer, U. Yasothan, S. Gubernick, P. Kirkpatrick, P. W. Kantoff, Nat. Rev. Drug Discovery 2010, 9, 513.
- 37V. K. Sondak, K. S. M. Smalley, R. Kudchadkar, S. Grippon, P. Kirkpatrick, Nat. Rev. Drug Discovery 2011, 10, 411.
- 38E. D. Deeks, Drugs 2016, 76, 375–386.
- 39E. D. Deeks, Drugs 2014, 74, 1233–1239.
- 40M. R. Migden, D. Rischin, C. D. Schmults, A. Guminski, A. Hauschild, K. D. Lewis, C. H. Chung, L. Hernandez-Aya, A. M. Lim, A. L. S. Chang, G. Rabinowits, A. A. Thai, L. A. Dunn, B. G. M. Hughes, N. I. Khushalani, B. Modi, D. Schadendorf, B. Gao, F. Seebach, S. Li, J. Li, M. Mathias, J. Booth, K. Mohan, E. Stankevich, H. M. Babiker, I. Brana, M. Gil-Martin, J. Homsi, M. L. Johnson, V. Moreno, J. Niu, T. K. Owonikoko, K. P. Papadopoulos, G. D. Yancopoulos, I. Lowy, M. G. Fury, N. Engl. J. Med. 2018, 379, 341–351.
- 41
- 41aR. R. A. Coombs, A. E. Mourant, R. R. Race, Lancet 1945, 246, 15–16;
10.1016/S0140-6736(45)90806-3 Google Scholar
- 41bR. R. A. Coombs, A. E. Mourant, R. R. Race, Br. J. Exp. Pathol. 1945, 26, 255–266.
- 42L. Pauling, D. H. Campbell, D. Pressman, Physiol. Rev. 1943, 23, 203–219.
- 43E. W. Silverton, M. A. Navia, D. R. Davies, Proc. Natl. Acad. Sci. USA 1977, 74, 5140–5144.
- 44S. L. Morrison, M. J. Johnson, L. A. Herzenberg, V. T. Oi, Proc. Natl. Acad. Sci. USA 1984, 81, 6851–6855.
- 45T. N. K. Raju, Lancet 1999, 354, 1040.
- 46N. K. Jerne, Proc. Natl. Acad. Sci. USA 1955, 41, 849–857.
- 47G. Köhler, C. Milstein, Nature 1975, 256, 495–497.
- 48G. Mathé, T. Loc, J. Bernard, C. R. Hebd. Seances Acad. Sci. 1958, 246, 1626–1628.
- 49G. J. Doherty, H. T. McMahon, Annu. Rev. Biochem. 2009, 78, 857–902.
- 50E. Tagliabue, A. Balsari, M. Campiglio, S. M. Pupa, Expert Opin. Biol. Ther. 2010, 10, 711–724.
- 51C. Krupka, P. Kufer, R. Kischel, G. Zugmaier, J. Bögeholz, T. Köhnke, F. S. Lichtenegger, S. Schneider, K. H. Metzeler, M. Fiegl, K. Spiekermann, P. A. Baeuerle, W. Hiddemann, G. Riethmüller, M. Subklewe, Blood 2014, 123, 356–365.
- 52F. Wöhler, Ann. Phys. 1828, 88, 253–256.
10.1002/andp.18280880206 Google Scholar
- 53
- 53aK. C. Nicolaou, Proc. R. Soc. London Ser. A 2014, 470, 20130690;
- 53bK. C. Nicolaou, Isr. J. Chem. 2018, 58, 104–113.
- 54K. C. Nicolaou, S. Rigol, R. Yu, CCS Chem. 2019, 1, 3–37.
- 55
- 55aK. C. Nicolaou, C. W. Hummel, E. N. Pitsinos, M. Nakada, A. L. Smith, K. Shibayama, H. Saimoto, J. Am. Chem. Soc. 1992, 114, 10082–10084;
- 55bR. D. Groneberg, T. Miyazaki, N. A. Stylianides, T. J. Schulze, W. Stahl, E. P. Schreiner, T. Suzuki, Y. Iwabuchi, A. L. Smith, K. C. Nicolaou, J. Am. Chem. Soc. 1993, 115, 7593–7611;
- 55cK. C. Nicolaou, C. W. Hummel, M. Nakada, K. Shibayama, E. N. Pitsinos, H. Saimoto, Y. Mizuno, K. U. Baldenius, A. L. Smith, J. Am. Chem. Soc. 1993, 115, 7625–7635;
- 55dA. L. Smith, E. N. Pitsinos, C. K. Hwang, Y. Mizuno, H. Saimoto, G. R. Scarlato, T. Suzuki, K. C. Nicolaou, J. Am. Chem. Soc. 1993, 115, 7612–7624.
- 56K. C. Nicolaou, T. Li, M. Nakada, C. W. Hummel, A. Hiatt, W. Wrasidlo, Angew. Chem. Int. Ed. Engl. 1994, 33, 183–186; Angew. Chem. 1994, 106, 195–198.
- 57
- 57aT. Ghose, S. P. Nigam, Cancer 1972, 29, 1398–1400;
10.1002/1097-0142(197205)29:5<1398::AID-CNCR2820290542>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 57bI. Flechner, Eur. J. Cancer 1973, 9, 741–745.
- 58
- 58aT. Ghose, A. H. Blair, JNCI J. Natl. Cancer Inst. 1978, 61, 657–676;
- 58bJ. Tai, A. H. Blair, T. Ghose, Eur. J. Cancer 1979, 15, 1357–1363.
- 59J. H. Linford, L. G. Israels, G. Froese, I. Berczi, JNCI J. Natl. Cancer Inst. 1974, 52, 1665–1667.
- 60
- 60aG. F. Rowland, G. J. O'Neill, D. A. L. Davies, Nature 1975, 255, 487–488;
- 60bG. F. Rowland, Eur. J. Cancer 1977, 13, 593–596.
- 61
- 61aE. Hurwitz, R. Levy, R. Maron, M. Wilchek, R. Arnon, M. Sela, Cancer Res. 1975, 35, 1175–1181;
- 61bR. Levy, E. Hurwitz, R. Maron, R. Arnon, M. Sela, Cancer Res. 1975, 35, 1182–1186;
- 61cE. Hurwitz, R. Maron, R. Arnon, M. Sela, Cancer Biochem. Biophys. 1976, 1, 197–202.
- 62H. M. Yang, R. A. Reisfeld, Proc. Natl. Acad. Sci. USA 1988, 85, 1189–1193.
- 63
- 63aP. Trail, D. Willner, S. Lasch, A. Henderson, S. Hofstead, A. Casazza, R. Firestone, I. Hellström, K. Hellström, Science 1993, 261, 212–215;
- 63bP. Trail, Science 1994, 263, 1076.
- 64L. Ducry, B. Stump, Bioconjugate Chem. 2010, 21, 5–13.
- 65
- 65aM. D. Lee, T. S. Dunne, M. M. Siegel, C. C. Chang, G. O. Morton, D. B. Borders, J. Am. Chem. Soc. 1987, 109, 3464–3466;
- 65bM. D. Lee, T. S. Dunne, C. C. Chang, M. M. Siegel, G. O. Morton, G. A. Ellestad, W. J. McGahren, D. B. Borders, J. Am. Chem. Soc. 1992, 114, 985–997.
- 66H. N. Lode, R. A. Reisfeld, R. Handgretinger, K. C. Nicolaou, G. Gaedicke, W. Wrasidlo, Cancer Res. 1998, 58, 2925–2928.
- 67
- 67aS. A. Hitchcock, S. H. Boyer, M. Y. Chu-Moyer, S. H. Olson, S. J. Danishefsky, Angew. Chem. Int. Ed. Engl. 1994, 33, 858–862; Angew. Chem. 1994, 106, 928–931;
- 67bR. L. Halcomb, S. H. Boyer, M. D. Wittman, S. H. Olson, D. J. Denhart, K. K. C. Liu, S. J. Danishefsky, J. Am. Chem. Soc. 1995, 117, 5720–5749;
- 67cS. A. Hitchcock, M. Y. Chu-Moyer, S. H. Boyer, S. H. Olson, S. J. Danishefsky, J. Am. Chem. Soc. 1995, 117, 5750–5756.
- 68
- 68aP. R. Hamann, L. M. Hinman, I. Hollander, C. F. Beyer, D. Lindh, R. Holcomb, W. Hallett, H.-R. Tsou, J. Upeslacis, D. Shochat, A. Mountain, D. A. Flowers, I. Bernstein, Bioconjugate Chem. 2002, 13, 47–58;
- 68bL. M. Hinman, P. R. Hamann, R. Wallace, A. T. Menendez, F. E. Durr, J. Upeslacis, Cancer Res. 1993, 53, 3336–3342.
- 69J. F. DiJoseph, D. C. Armellino, E. R. Boghaert, K. Khandke, M. M. Dougher, L. Sridharan, A. Kunz, P. R. Hamann, B. Gorovits, C. Udata, J. K. Moran, A. G. Popplewell, S. Stephens, P. Frost, N. K. Damle, Blood 2004, 103, 1807–1814.
- 70R. R. Jones, R. G. Bergman, J. Am. Chem. Soc. 1972, 94, 660–661.
- 71J. A. Francisco, C. G. Cerveny, D. L. Meyer, B. J. Mixan, K. Klussman, D. F. Chace, S. X. Rejniak, K. A. Gordon, R. DeBlanc, B. E. Toki, C.-L. Law, S. O. Doronina, C. B. Siegall, P. D. Senter, A. F. Wahl, Blood 2003, 102, 1458–1465.
- 72J. M. Lambert, R. V. J. Chari, J. Med. Chem. 2014, 57, 6949–6964.
- 73The DAR of the originally disclosed ADC was 8, while the DAR of the approved drug is 4.
- 74B. Iselin, T. Reichstein, Helv. Chim. Acta 1944, 27, 1146–1149.
- 75J. P. Marsh, C. W. Mosher, E. M. Acton, L. Goodman, Chem. Commun. 1967, 973–975.
- 76F. Arcamone, W. Barbieri, G. Franceschi, S. Penco, Chim. Ind. 1969, 51, 834–835.
- 77C. M. Wong, D. Popien, R. Schwenk, J. T. Raa, Can. J. Chem. 1971, 49, 2712–2718.
- 78C. M. Wong, R. Schwenk, D. Popien, T.-L. Ho, Can. J. Chem. 1973, 51, 466–467.
- 79E. M. Acton, A. N. Fujiwara, D. W. Henry, J. Med. Chem. 1974, 17, 659–660.
- 80
- 80aE. J. Corey, M. G. Bock, A. P. Kozikowski, A. V. R. Rao, D. Floyd, B. Lipshutz, Tetrahedron Lett. 1978, 19, 1051–1054;
10.1016/S0040-4039(01)85449-6 Google Scholar
- 80bE. J. Corey, L. O. Weigel, A. R. Chamberlin, H. Cho, D. H. Hua, J. Am. Chem. Soc. 1980, 102, 6613–6615.
- 81G. R. Pettit, Y. Kamano, C. L. Herald, A. A. Tuinman, F. E. Boettner, H. Kizu, J. M. Schmidt, L. Baczynskyj, K. B. Tomer, R. J. Bontems, J. Am. Chem. Soc. 1987, 109, 6883–6885.
- 82G. R. Pettit, S. B. Singh, F. Hogan, P. Lloyd-Williams, D. L. Herald, D. D. Burkett, P. J. Clewlow, J. Am. Chem. Soc. 1989, 111, 5463–5465.
- 83The initial isolation paper (ref. [65a]) designates the compound family as “calichemicins”, but later the name was adjusted to calicheamicins.
- 84M. D. Lee, T. S. Dunne, C. C. Chang, G. A. Ellestad, M. M. Siegel, G. O. Morton, W. J. McGahren, D. B. Borders, J. Am. Chem. Soc. 1987, 109, 3466–3468.
- 85
- 85aC. A. Leverett, S. C. K. Sukuru, B. C. Vetelino, S. Musto, K. Parris, J. Pandit, F. Loganzo, A. H. Varghese, G. Bai, B. Liu, D. Liu, S. Hudson, V. R. Doppalapudi, J. Stock, C. J. O'Donnell, C. Subramanyam, ACS Med. Chem. Lett. 2016, 7, 999–1004;
- 85bL. N. Tumey, C. A. Leverett, B. Vetelino, F. Li, B. Rago, X. Han, F. Loganzo, S. Musto, G. Bai, S. C. K. Sukuru, E. I. Graziani, S. Puthenveetil, J. Casavant, A. Ratnayake, K. Marquette, S. Hudson, V. R. Doppalapudi, J. Stock, L. Tchistiakova, A. J. Bessire, T. Clark, J. Lucas, C. Hosselet, C. J. O'Donnell, C. Subramanyam, ACS Med. Chem. Lett. 2016, 7, 977–982;
- 85cJ. S. Parker, M. McCormick, D. W. Anderson, B. A. Maltman, L. Gingipalli, D. Toader, Org. Process Res. Dev. 2017, 21, 1602–1609;
- 85dJ. Mantaj, P. J. M. Jackson, K. M. Rahman, D. E. Thurston, Angew. Chem. Int. Ed. 2017, 56, 462–488; Angew. Chem. 2017, 129, 474–502;
- 85eX. Cheng, J. Li, K. Tanaka, U. Majumder, A. Z. Milinichik, A. C. Verdi, C. J. Maddage, K. A. Rybinski, S. Fernando, D. Fernando, M. Kuc, K. Furuuchi, F. Fang, T. Uenaka, L. Grasso, E. F. Albone, Mol. Cancer Ther. 2018, 17, 2665–2675.
- 86
- 86aM. D. Tendler, S. Korman, Nature 1963, 199, 501;
- 86bW. Leimgruber, V. Stefanović, F. Schenker, A. Karr, J. Berger, J. Am. Chem. Soc. 1965, 87, 5791–5793.
- 87W. Leimgruber, A. D. Batcho, R. C. Czajkowski, J. Am. Chem. Soc. 1968, 90, 5641–5643.
- 88K. L. Jackson, J. A. Henderson, A. J. Phillips, Chem. Rev. 2009, 109, 3044–3079.
- 89T. D. Aicher, K. R. Buszek, F. G. Fang, C. J. Forsyth, S. H. Jung, Y. Kishi, M. C. Matelich, P. M. Scola, D. M. Spero, S. K. Yoon, J. Am. Chem. Soc. 1992, 114, 3162–3164.
- 90M. Ichimura, T. Ogawa, K. Takahashi, E. Kobayashi, I. Kawamoto, T. Yasuzawa, I. Takahashi, H. Nakano, J. Antibiot. 1990, 43, 1037–1038.
- 91D. L. Boger, B. Bollinger, D. L. Hertzog, D. S. Johnson, H. Cai, P. Mésini, R. M. Garbaccio, Q. Jin, P. A. Kitos, J. Am. Chem. Soc. 1997, 119, 4987–4998.
- 92D. L. Boger, K. Machiya, J. Am. Chem. Soc. 1992, 114, 10056–10058.
- 93F. Sasse, H. Steinmetz, J. Heil, G. Höfle, H. Reichenbach, J. Antibiot. 2000, 53, 879–885.
- 94H. M. Peltier, J. P. McMahon, A. W. Patterson, J. A. Ellman, J. Am. Chem. Soc. 2006, 128, 16018–16019.
- 95A. Dömling, B. Beck, U. Eichelberger, S. Sakamuri, S. Menon, Q.-Z. Chen, Y. Lu, L. A. Wessjohann, Angew. Chem. Int. Ed. 2006, 45, 7235–7239; Angew. Chem. 2006, 118, 7393–7397.
- 96A. Dömling, B. Beck, U. Eichelberger, S. Sakamuri, S. Menon, Q.-Z. Chen, Y. Lu, L. A. Wessjohann, Angew. Chem. Int. Ed. 2007, 46, 2347–2348; Angew. Chem. 2007, 119, 2399–2400.
- 97A. W. Patterson, H. M. Peltier, J. A. Ellman, J. Org. Chem. 2008, 73, 4362–4369.
- 98K. C. Nicolaou, J. Yin, D. Mandal, R. D. Erande, P. Klahn, M. Jin, M. Aujay, J. Sandoval, J. Gavrilyuk, D. Vourloumis, J. Am. Chem. Soc. 2016, 138, 1698–1708.
- 99K. C. Nicolaou, R. D. Erande, J. Yin, D. Vourloumis, M. Aujay, J. Sandoval, S. Munneke, J. Gavrilyuk, J. Am. Chem. Soc. 2018, 140, 3690–3711.
- 100
- 100aK. C. Nicolaou, Z. Lu, R. Li, J. R. Woods, T.-i. Sohn, J. Am. Chem. Soc. 2015, 137, 8716–8719;
- 100bK. C. Nicolaou, R. Li, Z. Lu, E. N. Pitsinos, L. B. Alemany, M. Aujay, C. Lee, J. Sandoval, J. Gavrilyuk, J. Am. Chem. Soc. 2018, 140, 12120–12136.
- 101N. Oku, S. Matsunaga, N. Fusetani, J. Am. Chem. Soc. 2003, 125, 2044–2045.
- 102J. Davies, H. Wang, T. Taylor, K. Warabi, X.-H. Huang, R. J. Andersen, Org. Lett. 2005, 7, 5233–5236.
- 103K. C. Nicolaou, H. Zhang, J. S. Chen, J. J. Crawford, L. Pasunoori, Angew. Chem. Int. Ed. 2007, 46, 4704–4707; Angew. Chem. 2007, 119, 4788–4791.
- 104K. C. Nicolaou, J. S. Chen, H. Zhang, A. Montero, Angew. Chem. Int. Ed. 2008, 47, 185–189; Angew. Chem. 2008, 120, 191–195.
- 105K. C. Nicolaou, Y. Wang, M. Lu, D. Mandal, M. R. Pattanayak, R. Yu, A. A. Shah, J. S. Chen, H. Zhang, J. J. Crawford, L. Pasunoori, Y. B. Poudel, N. S. Chowdari, C. Pan, A. Nazeer, S. Gangwar, G. Vite, E. N. Pitsinos, J. Am. Chem. Soc. 2016, 138, 8235–8246.
- 106The name for the substance was first given both with and without “e” at the end. Herein we use the spelling with terminal e, following the prevailing usage in the literature (cf. ref. [107] and H. Irschik, R. Jansen, K. Gerth, G. Höfle, H. Reichenbach, J. Antibiot. 1995, 48, 31–35).
- 107R. Jansen, H. Irschik, H. Reichenbach, V. Wray, G. Höfle, Liebigs Ann. Chem. 1994, 759–773.
- 108K. C. Nicolaou, G. Bellavance, M. Buchman, K. K. Pulukuri, J. Am. Chem. Soc. 2017, 139, 15636–15639.
- 109G. Höfle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth, H. Reichenbach, Angew. Chem. Int. Ed. Engl. 1996, 35, 1567–1569; Angew. Chem. 1996, 108, 1671–1673.
- 110
- 110aG. L. Gong, Y. Y. Huang, L. L. Liu, X. F. Chen, H. Liu, J. Microbiol. Biotechnol. 2015, 25, 1653–1659;
- 110bH. Yang, Z. Zhang, W. Tang, L. Ren, D. Wang, F. Sun, W. Zheng, J. Liq. Chromatogr. Rel. Technol. 2015, 38, 123–127.
- 111
- 111aK. C. Nicolaou, N. Winssinger, J. Pastor, S. Ninkovic, F. Sarabia, Y. He, D. Vourloumis, Z. Yang, T. Li, P. Giannakakou, E. Hamel, Nature 1997, 387, 268–272;
- 111bK. C. Nicolaou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y. He, H. Vallberg, M. R. V. Finlay, Z. Yang, J. Am. Chem. Soc. 1997, 119, 7974–7991;
- 111cD.-S. Su, D. Meng, P. Bertinato, A. Balog, E. J. Sorensen, S. J. Danishefsky, Y.-H. Zheng, T.-C. Chou, L. He, S. B. Horwitz, Angew. Chem. Int. Ed. Engl. 1997, 36, 757–759; Angew. Chem. 1997, 109, 775–777;
- 111dS. A. May, P. A. Grieco, Chem. Commun. 1998, 1597–1598;
- 111eJ. Mulzer, A. Mantoulidis, E. Öhler, J. Org. Chem. 2000, 65, 7456–7467;
- 111fJ. D. White, R. G. Carter, K. F. Sundermann, M. Wartmann, J. Am. Chem. Soc. 2001, 123, 5407–5413;
- 111gJ. W. Bode, E. M. Carreira, J. Am. Chem. Soc. 2001, 123, 3611–3612;
- 111hM. Valluri, R. M. Hindupur, P. Bijoy, G. Labadie, J.-C. Jung, M. A. Avery, Org. Lett. 2001, 3, 3607–3609;
- 111iG. E. Keck, R. L. Giles, V. J. Cee, C. A. Wager, T. Yu, M. B. Kraft, J. Org. Chem. 2008, 73, 9675–9691;
- 111jJ. Wang, B.-F. Sun, K. Cui, G.-Q. Lin, Org. Lett. 2012, 14, 6354–6357.
- 112J. L. Jat, M. P. Paudyal, H. Gao, Q.-L. Xu, M. Yousufuddin, D. Devarajan, D. H. Ess, L. Kürti, J. R. Falck, Science 2014, 343, 61–65.
- 113C. G. Espino, K. W. Fiori, M. Kim, J. Du Bois, J. Am. Chem. Soc. 2004, 126, 15378–15379.
- 114K. C. Nicolaou, D. Rhoades, Y. Wang, R. Bai, E. Hamel, M. Aujay, J. Sandoval, J. Gavrilyuk, J. Am. Chem. Soc. 2017, 139, 7318–7334.
- 115S. S. Block, R. L. Stephens, A. Barreto, W. A. Murrill, Science 1955, 121, 505–506.
- 116K. Matinkhoo, A. Pryyma, M. Todorovic, B. O. Patrick, D. M. Perrin, J. Am. Chem. Soc. 2018, 140, 6513–6517.
- 117A. V. Salnikov, G. Moldenhauer, H. Faulstich, I. Herr, J. Anderl, S. Lüttgau, JNCI J. Natl. Cancer Inst. 2012, 104, 622–634.
- 118
- 118aW. E. Savige, A. Fontana, J. Chem. Soc. Chem. Commun. 1976, 600–601;
- 118bW. E. Savige, A. Fontana, Int. J. Pept. Protein Res. 1980, 15, 102–112.
- 119M. Ojika, H. Kigoshi, K. Suenaga, Y. Imamura, K. Yoshikawa, T. Ishigaki, A. Sakakura, T. Mutou, K. Yamada, Tetrahedron 2012, 68, 982–987.
- 120N. Anžiček, S. Williams, M. P. Housden, I. Paterson, Org. Biomol. Chem. 2018, 16, 1343–1350.
- 121X. Liu, S. Biswas, M. G. Berg, C. M. Antapli, F. Xie, Q. Wang, M.-C. Tang, G.-L. Tang, L. Zhang, G. Dreyfuss, Y.-Q. Cheng, J. Nat. Prod. 2013, 76, 685–693.
- 122
- 122aK. C. Nicolaou, D. Rhoades, M. Lamani, M. R. Pattanayak, S. M. Kumar, J. Am. Chem. Soc. 2016, 138, 7532–7535;
- 122bK. C. Nicolaou, D. Rhoades, S. M. Kumar, J. Am. Chem. Soc. 2018, 140, 8303–8320.
- 123R. Liu, R. E. Wang, F. Wang, Expert Opin. Biol. Ther. 2016, 16, 591–593.
- 124J. H. Graversen, P. Svendsen, F. Dagnæs-Hansen, J. Dal, G. Anton, A. Etzerodt, M. D. Petersen, P. A. Christensen, H. J. Møller, S. K. Moestrup, Mol. Ther. 2012, 20, 1550–1558.
- 125S. M. Lehar, T. Pillow, M. Xu, L. Staben, K. K. Kajihara, R. Vandlen, L. DePalatis, H. Raab, W. L. Hazenbos, J. Hiroshi Morisaki, J. Kim, S. Park, M. Darwish, B.-C. Lee, H. Hernandez, K. M. Loyet, P. Lupardus, R. Fong, D. Yan, C. Chalouni, E. Luis, Y. Khalfin, E. Plise, J. Cheong, J. P. Lyssikatos, M. Strandh, K. Koefoed, P. S. Andersen, J. A. Flygare, M. Wah Tan, E. J. Brown, S. Mariathasan, Nature 2015, 527, 323–328.
- 126R. E. Wang, T. Liu, Y. Wang, Y. Cao, J. Du, X. Luo, V. Deshmukh, C. H. Kim, B. R. Lawson, M. S. Tremblay, T. S. Young, S. A. Kazane, F. Wang, P. G. Schultz, J. Am. Chem. Soc. 2015, 137, 3229–3232.
- 127R. K. V. Lim, S. Yu, B. Cheng, S. Li, N.-J. Kim, Y. Cao, V. Chi, J. Y. Kim, A. K. Chatterjee, P. G. Schultz, M. S. Tremblay, S. A. Kazane, Bioconjugate Chem. 2015, 26, 2216–2222.
- 128J. C. Kern, D. Dooney, R. Zhang, L. Liang, P. E. Brandish, M. Cheng, G. Feng, A. Beck, D. Bresson, J. Firdos, D. Gately, N. Knudsen, A. Manibusan, Y. Sun, R. M. Garbaccio, Bioconjugate Chem. 2016, 27, 2081–2088.
- 129 Innovations for Next-Generation Antibody-Drug Conjugates (Ed.: ), Springer International Publishing, Cham, 2018.
- 130N. Jain, S. W. Smith, S. Ghone, B. Tomczuk, Pharm. Res. 2015, 32, 3526–3540.
- 131R. V. J. Chari, Acc. Chem. Res. 2008, 41, 98–107.
- 132“Linker Technologies for Antibody-Drug Conjugates”: B. Nolting in Antibody-Drug Conjugates (Ed.: ), Humana Press, Totowa, 2013, pp. 71–100.
10.1007/978-1-62703-541-5_5 Google Scholar
- 133Y. V. Kovtun, C. A. Audette, M. F. Mayo, G. E. Jones, H. Doherty, E. K. Maloney, H. K. Erickson, X. Sun, S. Wilhelm, O. Ab, K. C. Lai, W. C. Widdison, B. Kellogg, H. Johnson, J. Pinkas, R. J. Lutz, R. Singh, V. S. Goldmacher, R. V. J. Chari, Cancer Res. 2010, 70, 2528–2537.
- 134R. Huisgen, G. Szeimies, L. Möbius, Chem. Ber. 1967, 100, 2494–2507.
- 135
- 135aV. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–2599;
10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 2708–2711;
- 135bC. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057–3064.
- 136R. van Geel, M. A. Wijdeven, R. Heesbeen, J. M. M. Verkade, A. A. Wasiel, S. S. van Berkel, F. L. van Delft, Bioconjugate Chem. 2015, 26, 2233–2242.
- 137
- 137aX. Cai, K. D. Janda, Tetrahedron Lett. 2015, 56, 3172–3175;
- 137bX. Cai, D. Globisch, P. Thompson, J. Lin, D. Toader, N. Dimasi, C. Gao, K. D. Janda, Tetrahedron Lett. 2015, 56, 4960.
- 138Q. Zhou, J. E. Stefano, C. Manning, J. Kyazike, B. Chen, D. A. Gianolio, A. Park, M. Busch, J. Bird, X. Zheng, H. Simonds-Mannes, J. Kim, R. C. Gregory, R. J. Miller, W. H. Brondyk, P. K. Dhal, C. Q. Pan, Bioconjugate Chem. 2014, 25, 510–520.
- 139J. Ohata, Z. T. Ball, J. Am. Chem. Soc. 2017, 139, 12617–12622.
- 140K. C. Nicolaou, Angew. Chem. Int. Ed. 2014, 53, 4730–4731; Angew. Chem. 2014, 126, 4822–4823.