The Chemistry, Biology, and Modulation of Ammonium Nitrification in Soil
Corresponding Author
Prof. Dr. Sebastian Wendeborn
University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Chemistry and Bioanalytics, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Sebastian Wendeborn
University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Chemistry and Bioanalytics, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
Search for more papers by this authorGraphical Abstract
The low efficiency of ammonium fertilizers used in agriculture contributes to significant environmental issues and economic losses. This Review discusses the chemistry and enzymatic mechanisms of microbial nitrification in the soil and highlights phytochemicals which can act as nitrification inhibitors, thus providing opportunities to stabilize ammonium in farm soils to increase the efficiency of nitrogen use.
Abstract
Approximately two percent of the world's energy is consumed in the production of ammonia from hydrogen and nitrogen gas. Ammonia is used as a fertilizer ingredient for agriculture and distributed in the environment on an enormous scale to promote crop growth in intensive farming. Only 30–50 % of the nitrogen applied is assimilated by crop plants; the remaining 50–70 % goes into biological processes such as nitrification by microbial metabolism in the soil. This leads to an imbalance in the global nitrogen cycle and higher nitrous oxide emissions (a potent and significant greenhouse gas) as well as contamination of ground and surface waters by nitrate from the nitrogen-fertilized farmland. This Review gives a critical overview of the current knowledge of soil microbes involved in the chemistry of ammonia nitrification, the structures and mechanisms of the enzymes involved, and phytochemicals capable of inhibiting ammonia nitrification.
Conflict of interest
The authors declare no conflict of interest.
References
- 1Estimated 115 Tg N/year N feritilizer applied globally (2018). Food and Agriculture Organization of the United Nations (2016) World Fertilizer Trends and Outlook to 2020: Summary Report (http://www.fao.org/3/a-i6895e.pdf).
- 2D. S. Reay, E. A. Davidson, K. A. Smith, P. Smith, J. M. Melillo, F. Dentener, P. J. Crutzen, Nat. Clim. Change 2012, 2, 410–416.
- 3H. J. Di, K. C. Cameron, Nutr. Cycling Agroecosyst. 2002, 64, 237–256.
- 4K. G. Cassman, A. Dobermann, D. T. Walters, AMBIO 2002, 31, 132–140.
- 5The number is based on fertilizer cost and use for corn farming in Illinois, USA, 2015. http://farmdocdaily.illinois.edu/2015/12/current-fertilizer-prices-and-projected-2016-costs.html.
- 6J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, M. A. Sutton, Science 2008, 320, 889–892.
- 7B. Pan, S. K. Lam, A. Mosier, Y. Luo, D. Chen, Agric. Ecosyst. Environ. 2016, 232, 283–289.
- 8H. Bücking, A. Kafle, Agronomy 2015, 5, 587–612.
- 9G. P. Robertson, P. M. Groffman, in Microbiology, Ecology, and Biochemistry, 4th ed. ), Academic Press, San Diego, 2015, Chapter 14, Nitrogen Transformations, pp. 421–446.
- 10S. D. Minteer, P. Christopher, S. Linic, ACS Energy Lett. 2019, 4, 163–166.
- 11W. Qiu, X.-Y. Xie, J. Qiu, W.-H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang, X. Sun, Nat. Commun. 2018, 9, 3485.
- 12S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, Angew. Chem. Int. Ed. 2017, 56, 2699–2703; Angew. Chem. 2017, 129, 2743–2747.
- 13R. D. Milton, R. Cai, S. Abdellaoui, D. Leech, A. L. De Lacey, M. Pita, S. D. Minteer, Angew. Chem. Int. Ed. 2017, 56, 2680–2683; Angew. Chem. 2017, 129, 2724–2727.
- 14 Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment (Eds.: ), Springer, Netherlands, 2005.
- 15J. D. Caranto, K. M. Lancaster, Proc. Natl. Acad. Sci. USA 2017, 114, 8217–8222.
- 16R. K. Thauer, K. Jungermann, K. Decker, Bacteriol. Rev. 1977, 41, 100–180.
- 17X. Li, S. Klaus, C. Bott, Z. He, Water Environ. Res. 2018, 90, 634–649.
- 18E. Broda, Z. Allg. Mikrobiol. 1977, 17, 491–493.
- 19B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. M. Op den Camp, H. R. Harhangi, E. M. Janssen-Megens, K.-J. Francoijs, H. G. Stunnenberg, J. T. Keltjens, M. S. M. Jetten, M. Strous, Nature 2011, 479, 127–130.
- 20A. Oren, FEMS Microbiol. Lett. 2015, 362, 114–117.
- 21B. M. Griffin, J. Schott, B. Schink, Science 2007, 316, 1870.
- 22J. Schott, B. Griffin, B. Schink, Microbiology 2010, 156, 2428–2437.
- 23
- 23a Mineral Nutrition of Higher Plants, 3rd ed. ), Academic Press, San Diego, 2012, pp. 135;
- 23b Mineral Nutrition of Higher Plants, 3rd ed. ), Academic Press, San Diego, 2012, pp. 144.
- 24I. Mistrik, C. Ulrich, Plant Physiol. Biochem. 1996, 34, 629–636.
- 25H. Marschner, V. Römheld, Z. Pflanzenphysiol. 1983, 111, 241–251.
- 26H. Moorby, P. Nye, R. White, Plant Soil 1985, 84, 403–415.
- 27T. P. Jahn, A. L. B. Møller, T. Zeuthen, L. M. Holm, D. A. Klaerke, B. Mohsin, W. Kühlbrandt, J. K. Schjoerring, FEBS Lett. 2004, 574, 31–36.
- 28Y. Zhu, H. Zeng, Q. Shen, T. Ishikawa, G. V. Subbarao, Plant Soil 2012, 358, 131–141.
- 29L. Salsac, S. Chaillou, J. F. Morot-Gaudry, C. Lesaint, E. Jolivet, Plant Physiol. Biochem. 1987, 25, 805–811.
- 30F. ten Hoopen, T. A. Cuin, P. Pedas, J. N. Hegelund, S. Shabala, J. K. Schjoerring, T. P. Jahn, J. Exp. Bot. 2010, 61, 2303–2315.
- 31For a relevant recent review, see also
- 31aG. Benckiser, T. Schartel, A. Weiske, Agron. Sustain. Dev. 2015, 35, 1059–1074;
- 31bF. Beeckman, H. Motte, T. Beeckman, Curr. Opin. Biotechnol. 2018, 50, 166–173.
- 32For a more detailed phylogenic tree of ammonia-oxidizing bacteria, see
- 32a“Diversity and environmental distribution of ammonia-oxidizing bacteria”: J. M. Norton, in Nitrification (Eds.: ), American Society for Microbiology Press, Washington, DC, 2011, pp. 39–55;
10.1128/9781555817145.ch3 Google Scholar
- 32b“The lithoautotrophic ammonia-oxidizing bacteria”: H.-P. Koops, U. Purkhold, A. Pommerening-Röser, G. Timmermann, M. Wagner, in The Prokaryotes: A Handbook on the Biology of Bacteria (Eds.: ), Springer, Berlin, 2006, pp. 778–788.
10.1007/0-387-30745-1_36 Google Scholar
- 33H. J. Di, K. C. Cameron, J. P. Shen, C. S. Winefield, M. O'Callaghan, S. Bowatte, J. Z. He, Nat. Geosci. 2009, 2, 621–624.
- 34It is clearly NH3 and not NH4+ which is oxidized by AMO.
- 35K. D. Kits, C. J. Sedlacek, E. V. Lebedeva, P. Han, P. A. Bulaev, P. Pjevac, A. Daebeler, S. Romano, M. Albertsen, L. Y. Stein, H. Daims, M. Wagner, Nature 2017, 549, 269–272.
- 36W. Martens-Habbena, P. M. Berube, H. Urakawa, J. R. de la Torre, D. A. Stahl, Nature 2009, 461, 976–979.
- 37Y. Ouyang, J. M. Norton, J. M. Stark, Soil Biol. Biochem. 2017, 113, 161–172.
- 38G. P. Robertson, P. M. Groffman, in Microbiology, Ecology, and Biochemistry, 4th ed. ), Academic Press, San Diego, 2015, Chapter 14 Nitrogen Transformations, pp. 421–446.
- 39M. E. Kurczy, E. M. Forsberg, M. P. Thorgersen, F. L. Poole, H. P. Benton, J. Ivanisevic, M. L. Tran, J. D. Wall, D. A. Elias, M. W. W. Adams, G. Siuzdak, ACS Chem. Biol. 2016, 11, 1677–1685.
- 40J. A. Zahn, D. M. Arciero, A. B. Hooper, A. A. DiSpirito, FEBS Lett. 1996, 397, 35–38.
- 41J. H. Shears, P. M. Wood, Biochem. J. 1985, 226, 499–507.
- 42S. A. Ensign, M. R. Hyman, D. J. Arp, J. Bacteriol. 1993, 175, 1971–1980.
- 43S. Gilch, O. Meyer, I. Schmidt, BioMetals 2010, 23, 613–622.
- 44
- 44aR. Balasubramanian, S. M. Smith, S. Rawat, L. A. Yatsunyk, T. L. Stemmler, A. C. Rosenzweig, Nature 2010, 465, 115–119;
- 44bR. L. Lieberman, A. C. Rosenzweig, Nature 2005, 434, 177–182;
- 44cR. L. Lieberman, A. C. Rosenzweig, Dalton Trans. 2005, 3390–3396;
- 44dR. L. Lieberman, K. C. Kondapalli, D. B. Shrestha, A. S. Hakemian, S. M. Smith, J. Telser, J. Kuzelka, R. Gupta, A. S. Borovik, S. J. Lippard, B. M. Hoffman, A. C. Rosenzweig, T. L. Stemmler, Inorg. Chem. 2006, 45, 8372–8381.
- 45M. D. Pham, Y.-P. Lin, Q. V. Vuong, P. Nagababu, B. T.-A. Chang, K. Y. Ng, C.-H. Chen, C.-C. Han, C.-H. Chen, M. S. Li, S. S.-F. Yu, S. I. Chan, Biochim. Biophys. Acta Proteins Proteomics 2015, 1854, 1842–1852.
- 46
- 46aP. P. Chen, R. B. Yang, J. C. Lee, S. I. Chan, Proc. Natl. Acad. Sci. USA 2007, 104, 14570–14575;
- 46bS. I. Chan, S. S. Yu, Acc. Chem. Res. 2008, 41, 969–979.
- 47L. Cao, O. Caldararu, A. C. Rosenzweig, U. Ryde, Angew. Chem. Int. Ed. 2018, 57, 162–166; Angew. Chem. 2018, 130, 168–172.
- 48T. J. Lawton, J. Ham, T. Sun, A. C. Rosenzweig, Proteins Struct. Funct. Bioinf. 2014, 82, 2263–2267.
- 49J. M. Norton, M. G. Klotz, L. Y. Stein, D. J. Arp, P. J. Bottomley, P. S. Chain, L. J. Hauser, M. L. Land, F. W. Larimer, M. W. Shin, S. R. Starkenburg, Appl. Environ. Microbiol. 2008, 74, 3559–3572.
- 50P. Chain, J. Lamerdin, F. Larimer, W. Regala, V. Lao, M. Land, L. Hauser, A. Hooper, M. Klotz, J. Norton, L. Sayavedra-Soto, D. Arciero, N. Hommes, M. Whittaker, D. Arp, J. Bacteriol. 2003, 185, 2759–2773.
- 51J. C. S. Da Silva, R. C. R. Pennifold, J. N. Harvey, W. R. Rocha, Dalton Trans. 2016, 45, 2492–2504.
- 52S. Y. Ro, M. O. Ross, Y. W. Deng, S. Batelu, T. J. Lawton, J. D. Hurley, T. L. Stemmler, B. M. Hoffman, A. C. Rosenzweig, J. Biol. Chem. 2018, 293, 10457–10465.
- 53O. S. Fisher, G. E. Kenney, M. O. Ross, S. Y. Ro, B. E. Lemma, S. Batelu, P. M. Thomas, V. C. Sosnowski, C. J. DeHart, N. L. Kelleher, T. L. Stemmler, B. M. Hoffman, A. C. Rosenzweig, Nat. Commun. 2018, 9, 4276.
- 54N. Igarashi, H. Moriyama, T. Fujiwara, Y. Fukumori, N. Tanaka, Nat. Struct. Biol. 1997, 4, 276–284.
- 55P. Cedervall, A. B. Hooper, C. M. Wilmot, Biochemistry 2013, 52, 6211–6218.
- 56W. J. Maalcke, A. Dietl, S. J. Marritt, J. N. Butt, M. S. M. Jetten, J. T. Keltjens, T. R. M. Barends, B. Kartal, J. Biol. Chem. 2014, 289, 1228.
- 57M. L. Fernández, D. A. Estrin, S. E. Bari, J. Inorg. Biochem. 2008, 102, 1523–1530.
- 58J. Enemark, R. Feltham, Coord. Chem. Rev. 1974, 13, 339–406.
- 59The trimeric structure was reassembled from the monomeric structure downloaded from the protein data bank with PDBe PISA: http://www.ebi.ac.uk/msd-srv/prot int/cgi-bin/piserver.
- 60J. D. Caranto, A. C. Vilbert, K. M. Lancaster, Proc. Natl. Acad. Sci. USA 2016, 113, 14704–14709.
- 61
- 61aB.-J. Ni, L. Peng, Y. Law, J. Guo, Z. Yuan, Environ. Sci. Technol. 2014, 48, 3916–3924;
- 61bO. Perez-Garcia, S. G. Villas-Boas, S. Swift, K. Chandran, N. Singhal, Water Res. 2014, 60, 267–277;
- 61cF. Sabba, C. Picioreanu, J. Pérez, R. Nerenberg, Environ. Sci. Technol. 2015, 49, 1486–1494.
- 62For a recent review focusing on structural and mechanistic aspects of HAO and other enzymes involved in NH3 oxidation as well as N2O production and degradation in the nitrogen cycle, see N. Lehnert, H. T. Dong, J. B. Harland, A. P. Hunt, C. J. White, Nat. Rev. Chem. 2018, 2, 278–289.
- 63
- 63aA. K. Upadhyay, A. B. Hooper, M. P. Hendrich, J. Am. Chem. Soc. 2006, 128, 4330–4337;
- 63b“Cytochrome c554”: T. M. Iverson, M. P. Hendrich, D. M. Arciero, A. B. Hooper, D. C. Rees, Handbook of Metalloproteins (Eds.: ), Wiley, Chichester, 2001.
- 64T. Iizumi, M. Mizumoto, K. Nakamura, Appl. Environ. Microbiol. 1998, 64, 3656–3662.
- 65D. J. Arp, L. Y. Stein, Crit. Rev. Biochem. Mol. Biol. 2003, 38, 471–495.
- 66Zulassung von Düngemitteln mit Nitrifikations- und Ureaseinhibitoren. 2017 Deutscher Bundestag WD 5-3000-116/16.
- 67I. R. P. Fillery, Plant Soil 2007, 294, 1–4.
- 68
- 68aA. Opoku, B. Chaves, S. De Neve, Biol. Agric. Hortic. 2014, 30, 145–152;
- 68bR. Kumar, C. Devakumar, D. Kumar, P. Panneerselvam, G. Kakkar, T. Arivalagan, J. Agric. Food Chem. 2008, 56, 10183–1091;
- 68cthere is enough, quality neem oil for urea coating. Time of India 2017, July 19 (https://timesofindia.indiatimes.com/business/india-business/there-is-enough-quality-neem-oil-for-urea-coating-govt/articleshow/59662111.cms).
- 69D. Coskun, D. T. Britto, W. Shi, H. J. Kronzucker, Trends Plant Sci. 2017, 22, 661–673.
- 70D. Coskun, D. T. Britto, W. Shi, H. J. Kronzucker, Nat. Plants 2017, 3, 17074.
- 71G. V. Subbarao, O. Ito, K. L. Sahrawat, W. L. Berry, K. Nakahara, T. Ishikawa, T. Watanabe, K. Suenaga, M. Rondon, I. M. Rao, Crit. Rev. Plant Sci. 2006, 25, 303–335.
- 72S. Gopalakrishnan, G. V. Subbararo, K. Nakahara, T. Yoshihashi, O. Ito, I. Maeda, H. Ono, M. Yoshida, J. Agric. Food Chem. 2007, 55, 1385–1388.
- 73M. A. K. Lodhi, K. T. Killingbeck, Am. J. Bot. 1980, 67, 1423–1429.
- 74P. Alam, M. K. Parvez, A. H. Arbab, N. A. Siddiqui, M. S. Al-Dosary, A. J. Al-Rehaily, S. Ahmed, M. A. Kalam, M. S. Ahmad, Pharm. Biol. 2017, 55, 1450–1457.
- 75A. J. Erickson, R. S. Ramsewak, A. J. Smucker, M. G. Nair, J. Agric. Food Chem. 2000, 48, 6174–6177.
- 76O. Kodama, J. Miyakawa, T. Akatsuka, S. Kiyosawa, Phytochemistry 1992, 31, 3807–3809.
- 77G. V. Subbarao, K. Nakahara, T. Ishikawa, H. Ono, M. Yoshida, T. Yoshihashi, Y. Zhu, H. A. K. M. Zakir, S. P. Deshpande, C. T. Hash, K. L. Sahrawat, Plant Soil 2013, 366, 243–259.
- 78K. L. Sahrawat, S. K. Mukerjee, Plant Soil 1977, 47, 27–36.
- 79K. L. Sahrawat, Plant Soil 1981, 59, 495–498.
- 80D. Majumdar, B. Pandya, A. Arora, S. Dhara, Arch. Agro. Soil. Sci. 2004, 50, 455–495.
- 81G. V. Subbarao, K. Nakahara, M. P. Hurtado, H. Ono, D. E. Moreta, A. F. Salcedo, A. T. Yoshihashi, T. Ishikawa, M. Ishitani, M. Ohnishi-Kameyama, M. Yoshida, M. Rondon, I. M. Rao, C. E. Lascano, W. L. Berry, O. Ito, Proc. Natl. Acad. Sci. USA 2009, 106, 17302–17307.
- 82F. E. Dayan, A. M. Rimando, Z. Pan, S. R. Baerson, A. L. Gimsing, S. O. Duke, Phytochemistry 2010, 71, 1032–1039.
- 83A. M. Hejli, K. L. Koster, J. Chem. Ecol. 2004, 30, 2181–2191.
- 84V. M. Gonzalez, J. Kazimir, C. Nimbal, L. A. Weston, G. M. Cheniae, J. Agric. Food Chem. 1997, 45, 1415–1421.
- 85A. M. Rimando, F. E. Dayan, M. A. Czarnota, L. A. Weston, S. O. Duke, J. Nat. Prod. 1998, 61, 927–930.
- 86
- 86aC. Hauck, S. Müller, H. Schildknecht, J. Plant Physiol. 1992, 139, 474–478;
- 86bY. Sugimoto, S. C. M. Wigchert, J. W. J. F. Thuring, B. Zwanenburg, J. Org. Chem. 1998, 63, 1259–1267.
- 87G. V. Subbarao, A. K. M. Z. Hossain, K. Nakahara,T. Ishikawa, M. Yanbuaban, T. Yoshihashi, H. Ono, M. Yoshida, T. Hash, H. Upadhyaya, P. Srinivasarao, B. S. Reddy, et al., Int. Plant Nutrition Colloquium (E-Journal article), 2009, https://escholarship.org/uc/item/5tp8s9pj.
- 88G. V. Subbarao, K. L. Sahrawat, K. Nakahara, T. Ishikawa, M. Kishii, I. M. Rao, C. T. Hash, T. S. George, P. Srinivasa Rao, P. Nardi, D. Bonnett, W. Berry, K. Suenaga, J. C. Lata, Adv. Agron. 2012, 114, 249–302.
- 89L. Sun, Y. Lu, F. Yu, H. J. Kronzucker, W. Shi, New Phytol. 2016, 212, 646–656.
- 90E. Taher, K. Chandran, Environ. Sci. Technol. 2013, 47, 3167–3173.
- 91W. K. Keener, D. J. Arp, Appl. Environ. Microbiol. 1993, 59, 2501–2510.
- 92G. V. Subbarao, K. Nakahara, T. Ishikawa, T. Yoshihashi, O. Ito, H. Ono, M. Ohnishi-Kameyama, M. Yoshida, N. Kawano, W. L. Berr, Plant Soil 2008, 313, 89–99.
- 93C. A. I. Goring, Soil Sci. 1962, 93, 211–218.
- 94T. B. Parkin, J. L. Hatfield, Agric. Ecosyst. Environ. 2010, 136, 81–86.
- 95D. Rovita, R. Killorn, Commun. Soil Sci. Plant Anal. 2007, 38, 1949–1963.
- 96C. W. Hendricks, A. N. Rhodes, Bull. Environ. Contam. Toxicol. 1992, 49, 417–424.
- 97Y. Gu, W. Mi, Y. Xie, Q. Ma, L. Wu, Z. Hu, F. Dai, J. Soils Sediments 2018, https://doi.org/10.1007/s11368-018-2075-3.
- 98S. J. Powell, J. I. Prosser, Appl. Environ. Microbiol. 1986, 52, 782–787.
- 99P. L. Salvas, B. F. Taylor, Curr. Microbiol. 1984, 10, 53–56.
- 100T. Vannelli, A. B. Hooper, Appl. Environ. Microbiol. 1992, 58, 2321–2325.
- 101W. Zerulla, T. Barth, J. Dressel, K. Erhardt, K. Horchler von Locquenghien, G. Pasda, M. Rädle, A. H. Wissemeier, Biol. Fertil. Soils 2001, 34, 79–84.
- 102C. Müller, R. J. Stevens, R. J. Laughlin, F. Azam, J. C. G. Ottow, Soil Biol. Biochem. 2002, 34, 1825–1827.
- 103A. Amberger, Commun. Soil Sci. Plant Anal. 1989, 20, 1933–1955.
- 104T. Sanders, S. Lassen, Geophys. Res. Abstr. 2015, 17, EGU 2015-13076.
- 105S. M. Carlisle, J. T. Trevors, Water Air Soil Pollution 1986, 29, 189–203.
- 106L. K. Porter, Soil Sci. Soc. Am. J. 1992, 56, 102–105.
- 107J. M. Bremner, A. M. Blackmer, Nature 1979, 280, 380–381.
- 108G. W. McCarty, J. M. Bremner, Soil Sci. Soc. Am. J. 1990, 54, 1017–1021.
- 109R. K. Hynes, R. Knowles, FEMS Microbiol. Lett. 1978, 4, 319–321.
- 110For a personal historical account, see commentary on “Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea” R. K. Hynes, FEMS Microbiol. Lett. 2017, 364, fnx 068.
- 111M. R. Hyman, P. M. Wood, Biochem. J. 1985, 227, 719–725.
- 112S. Gilch, M. Vogel, M. W. Lorenz, O. Meyer, I. Schmidt, Microbiology 2009, 155, 279–284.
- 113T. Mahmood, W. M. Kaiser, R. Ali, M. Ashraf, A. Gulnaz, Z. Iqbal, Plant Soil 2005, 277, 233–243. Note that dicyandiamide was used as a nitrification inhibitor in this study to maintain NH4+ as the dominant nitrogen source for plant growth.
- 114H. Zeng, T. Di, Y. Zhu, G. V. Subbarao, Plant Soil 2016, 398, 301–312.
- 115T. Di, M. R. Afzal, T. Yoshihashi, S. Deshpande, Y. Zhu, G. V. Subbarao, Plant Soil 2018, 423, 99–110.
- 116For a review, see T. Kiba, T. Kudo, M. Kojima, H. Sakakibara, J. Exp. Bot. 2011, 62, 1399–1409.
- 117V. Y. Shtratnikova, N. V. Kudryakova, G. R. Kudoyarova, A. V. Korobova, G. R. Akhiyarova, M. N. Danilova, V. V. Kusnetsov, O. N. Kulaeva, Russ. J. Plant Physiol. 2015, 62, 741–752.
- 118N. Stec, J. Banasiak, M. Jasiński, Acta Biochim. Pol. 2016, 63, 53–58.
- 119P. Bonfante, A. Genre, Nat. Commun. 2010, 1, 48.
- 120S. Hassan, U. Mathesius, J. Exp. Bot. 2012, 63, 3429–3444.
- 121E. Limpens, A. van Zeijl, R. Geurts, Annu. Rev. Phytopathol. 2015, 53, 311–334.
- 122G. E. D. Oldroyd, Nat. Rev. Microbiol. 2013, 11, 252–263.