Direct Monitoring of Cell Membrane Vesiculation with 2D AuNP@MnO2 Nanosheet Supraparticles at the Single-Particle Level
Yunyun Ling
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
Search for more papers by this authorDi Zhang
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXimin Cui
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
Search for more papers by this authorMeimei Wei
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
Search for more papers by this authorTing Zhang
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Jianfang Wang
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lehui Xiao
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yunsheng Xia
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
Search for more papers by this authorYunyun Ling
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
Search for more papers by this authorDi Zhang
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXimin Cui
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
Search for more papers by this authorMeimei Wei
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
Search for more papers by this authorTing Zhang
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Jianfang Wang
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lehui Xiao
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yunsheng Xia
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
Search for more papers by this authorGraphical Abstract
Abstract
We herein demonstrate robust two-dimensional (2D) UFO-shaped plasmonic supraparticles made of gold nanoparticles (AuNPs) and MnO2 nanosheets (denoted as AMNS-SPs) for directly monitoring cell membrane vesiculation at the single-particle level. Because the decorated MnO2 nanosheets are ultrathin (4.2 nm) and have large diameters (230 nm), they are flexible enough for deformation and folding for parceling of the AuNPs during the endocytosis process. Correspondingly, the surrounding refractive index of the AuNPs increases dramatically, which results in a distinct red-shift of the localized surface plasmon resonance (LSPR). Such LSPR modulation provides a convenient and accurate means for directly monitoring the dynamic interactions between 2D nanomaterials and cell membranes. Furthermore, for the endocytosed AMNS-SPs, the subsequent LSPR blue-shift induced by etching effects of reducing molecules is promising for exploring the local environment redox states at the single-cell level.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201902987-sup-0001-misc_information.pdf3.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666;
- 1bC. Tan, X. Cao, X. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117, 6225;
- 1cS. Karunakaran, S. Pandit, B. Basu, M. De, J. Am. Chem. Soc. 2018, 140, 12634.
- 2
- 2aR. Deng, X. Xie, M. Vendrell, Y. Chang, X. Liu, J. Am. Chem. Soc. 2011, 133, 20168;
- 2bD. Chimene, D. L. Alge, A. K. Gaharwar, Adv. Mater. 2015, 27, 7261;
- 2cY. Peng, Y. Huang, Y. Zhu, B. Chen, L. Wang, Z. Lai, Z. Zhang, M. Zhao, C. Tan, N. Yang, F. Shao, Y. Han, H. Zhang, J. Am. Chem. Soc. 2017, 139, 8698.
- 3
- 3aS. Shin, Y. Li, H. Jang, P. Khoshakhlagh, M. Akbari, A. Nasajpour, Y. Zhang, A. Tamayol, A. Khademhosseini, Adv. Drug Delivery Rev. 2016, 105, 255;
- 3bZ. Tu, G. Guday, M. Adeli, R. Haag, Adv. Mater. 2018, 30, 1706709.
- 4
- 4aH. Fan, G. Yan, Z. Zhao, X. Hu, W. Zhang, H. Liu, X. Fu, T. Fu, X. Zhang, W. Tan, Angew. Chem. Int. Ed. 2016, 55, 5477; Angew. Chem. 2016, 128, 5567;
- 4bX. Zhu, X. Ji, N. Kong, Y. Chen, M. Mahmoudi, X. Xu, L. Ding, W. Tao, T. Cai, Y. Li, T. Gan, A. Barrett, Z. Bharwani, H. Chen, O. C. Farokhzad, ACS Nano 2018, 12, 2922;
- 4cM. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, Y. Cao, Proc. Natl. Acad. Sci. USA 2018, 115, 501;
- 4dZ. Tu, H. Qiao, Y. Yan, G. Guday, W. Chen, M. Adeli, R. Haag, Angew. Chem. Int. Ed. 2018, 57, 11198; Angew. Chem. 2018, 130, 11368.
- 5
- 5aZ. Wang, W. Zhu, Y. Qiu, X. Yi, A. von dem Bussche, A. Kane, H. Gao, K. Koski, R. Hurt, Chem. Soc. Rev. 2016, 45, 1750;
- 5bP. Chen, L. Yan, J. Mater. Chem. B 2017, 5, 4290.
- 6
- 6aY. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Z. Liu, Q. Huang, C. Fan, H. Fang, R. Zhou, Nat. Nanotechnol. 2013, 8, 594;
- 6bY. Li, H. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, H. Gao, Proc. Natl. Acad. Sci. USA 2013, 110, 12295;
- 6cJ. Mao, P. Chen, J. Liang, R. Guo, L. Yan, ACS Nano 2016, 10, 1493.
- 7
- 7aA. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543;
- 7bC. Rodriguez-Quijada, M. Sánchez-Purrà, H. de Puig, K. Hamad-Schifferli, J. Phys. Chem. B 2018, 122, 2827;
- 7cJ. Mosquera, I. García, L. M. Liz-Marzán, Acc. Chem. Res. 2018, 51, 2305;
- 7dG. B. Braun, T. Friman, H. Pang, A. Pallaoro, T. de Mendoza, A. A. Willmore, V. Kotamraju, A. P. Mann, Z. She, K. N. Sugahara, N. O. Reich, T. Teesalu, E. Ruoslahti, Nat. Mater. 2014, 13, 904;
- 7eS. Behzadi, V. Serpooshan, W. Tao, M. A. Hamaly, M. Y. Alkawareek, E. C. Dreaden, D. Brown, A. M. Alkilany, O. C. Farokhzad, M. Mahmoudi, Chem. Soc. Rev. 2017, 46, 4218.
- 8F. Q. Schafer, G. R. Buettner, Free Radical Biol. Med. 2001, 30, 1191.
- 9
- 9aT. T. Truong, Y. Liu, Y. Ren, L. Trahey, Y. Sun, ACS Nano 2012, 6, 8067;
- 9bY. Sun, L. Wang, Y. Liu, Y. Ren, Small 2015, 11, 300.
- 10Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, D. Shen, ACS Appl. Mater. Interfaces 2016, 8, 9050.
- 11
- 11aB. Liu, I. M. Mosa, W. Song, H. Zheng, C. Kuo, J. F. Rusling, S. L. Suib, J. He, J. Mater. Chem. A 2016, 4, 6447;
- 11bX. Yi, L. Chen, X. Zhong, R. Gao, Y. Qian, F. Wu, G. Song, Z. Chai, Z. Liu, K. Yang, Nano Res. 2016, 9, 3267;
- 11cF. Zhou, T. Zheng, E. S. Abdel-Halim, L. Jiang, J. Zhu, J. Mater. Chem. B 2016, 4, 2887;
- 11dJ. Xu, P. Gu, D. J. S. Birch, Y. Chen, Adv. Funct. Mater. 2018, 28, 1801573;
- 11eD. Fu, X. Ding, J. Wu, C. Li, Q. Wang, J. Jiang, Part. Part. Syst. Charact. 2018, 35, 1800078.
- 12K. Kai, Y. Yoshida, H. Kageyama, G. Saito, T. Ishigaki, Y. Furukawa, J. Kawamata, J. Am. Chem. Soc. 2008, 130, 15938.
- 13Malvern Instruments Ltd. Sample Dispersion and Refractive Index Guide. 2007, MAN0396.
- 14
- 14aK. Welsher, H. Yang, Nat. Nanotechnol. 2014, 9, 198;
- 14bJ. Liang, P. Chen, B. Dong, Z. Huang, K. Zhao, L. Yan, Biomacromolecules 2016, 17, 1834.