Designing Hydrogen-Bonded Organic Frameworks (HOFs) with Permanent Porosity
Correction(s) for this article
-
Corrigendum: Designing Hydrogen-Bonded Organic Frameworks (HOFs) with Permanent Porosity
- Volume 58Issue 42Angewandte Chemie International Edition
- pages: 14794-14794
- First Published online: October 7, 2019
Corresponding Author
Dr. Ichiro Hisaki
Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020 Japan
Graduate School of Environmental Science, Hokkaido University, N10W5, Spapporo, 060-0810 Japan
Search for more papers by this authorChen Xin
Graduate School of Environmental Science, Hokkaido University, N10W5, Spapporo, 060-0810 Japan
Search for more papers by this authorDr. Kiyonori Takahashi
Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020 Japan
Graduate School of Environmental Science, Hokkaido University, N10W5, Spapporo, 060-0810 Japan
Search for more papers by this authorProf. Takayoshi Nakamura
Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020 Japan
Graduate School of Environmental Science, Hokkaido University, N10W5, Spapporo, 060-0810 Japan
Search for more papers by this authorCorresponding Author
Dr. Ichiro Hisaki
Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020 Japan
Graduate School of Environmental Science, Hokkaido University, N10W5, Spapporo, 060-0810 Japan
Search for more papers by this authorChen Xin
Graduate School of Environmental Science, Hokkaido University, N10W5, Spapporo, 060-0810 Japan
Search for more papers by this authorDr. Kiyonori Takahashi
Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020 Japan
Graduate School of Environmental Science, Hokkaido University, N10W5, Spapporo, 060-0810 Japan
Search for more papers by this authorProf. Takayoshi Nakamura
Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo, 001-0020 Japan
Graduate School of Environmental Science, Hokkaido University, N10W5, Spapporo, 060-0810 Japan
Search for more papers by this authorGraphical Abstract
Abstract
Designing organic components that can be used to construct porous materials enables the preparation of tailored functionalized materials. Research into porous materials has seen a resurgence in the past decade as a result of finding of self-standing porous molecular crystals (PMCs). Particularly, a number of crystalline systems with permanent porosity that are formed by self-assembly through hydrogen bonding (H-bonding) have been developed. Such systems are called hydrogen-bonded organic frameworks (HOFs). Herein we systematically describe H-bonding patterns (supramolecular synthons) and molecular structures (tectons) that have been used to achieve thermal and chemical durability, a large surface area, and functions, such as selective gas sorption and separation, which can provide design principles for constructing HOFs with permanent porosity.
Conflict of interest
The authors declare no conflict of interest.
References
- 1A. G. Slater, A. I. Cooper, Science 2015, 348, aaa 8075.
- 2O. M. Yaghi, G. Li, H. Li, Nature 1995, 378, 703–706.
- 3M. Kondo, K. Fujimoto, T. Ohkubi, A. Asami, S. Noro, S. Kitagawa, T. Ishii, H. Matsuzaki, Chem. Lett. 1999, 28, 291–292.
- 4
- 4aA. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170;
- 4bP. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053–3063.
- 5
- 5aA. Comotti, R. Simonutti, S. Stramare, P. Sozzani, Nanotechnology 1999, 10, 70–76;
- 5bP. Sozzani, A. Comotti, R. Simonutti, T. Meersmann, J. W. Logan, A. Pines, Angew. Chem. Int. Ed. 2000, 39, 2695–2699;
10.1002/1521-3773(20000804)39:15<2695::AID-ANIE2695>3.0.CO;2-M CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 2807–2810;
- 5cP. Sozzani, S. Bracco, A. Comotti, L. Ferretti, R. Simonutti, Angew. Chem. Int. Ed. 2005, 44, 1816–1820; Angew. Chem. 2005, 117, 1850–1854.
- 6 Inclusion Compounds, Vol. 1–3 (Eds.: ), Academic Press, London, 1984.
- 7
- 7aB. T. Ibragimov, S. A. Talipov, F. T. Aripov, J. Inclusion Phenom. Mol. Recognit. Chem. 1994, 17, 317–324;
- 7bK. Endo, T. Sawaki, M. Koyanagi, K. Kobayashi, H. Masuda, Y. Aoyama, J. Am. Chem. Soc. 1995, 117, 8341–8352;
- 7cT. Sawaki, Y. Aoyama, J. Am. Chem. Soc. 1999, 121, 4793–4798.
- 8R.-B. Lin, Y. He, P. Ki, H. Wang, W. Zhou, B. Chen, Chem. Soc. Rev. 2019, https://doi.org/10.1039/C8CS00155C.
- 9Q. Yin, P. Zhao, R.-J. Sa, G.-C. Chen, J. Lü, T.-F. Liu, R. Cao, Angew. Chem. Int. Ed. 2018, 57, 7691–7696; Angew. Chem. 2018, 130, 7817–7822.
- 10
- 10aJ.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869–932;
- 10bT. R. Cook, Y.-R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734–777;
- 10cM. Li, D. Li, M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2014, 114, 1343–1370.
- 11
- 11aX. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010–6022;
- 11bS.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548–568;
- 11cM. Dogru, T. Bein, Chem. Commun. 2014, 50, 5531–5546;
- 11dW. Zhao, L. Xia, X. Liu, CrystEngComm 2018, 20, 1613–1634.
- 12G. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311–2327; Angew. Chem. 1995, 107, 2541–2558.
- 13M. Simard, D. Su, J. D. Wuest, J. Am. Chem. Soc. 1991, 113, 4696–4698.
- 14P. Li, N. A. Vermeulen, C. D. Malliakas, D. A. Gómez-Gualdrón, A. J. Howarth, B. L. Mehdi, A. Dohnaklova, N. D. Browning, M. O'Keeffe, O. K. Farha, Science 2017, 356, 624–627.
- 15O. Ivasenko, D. F. Perepichka, Chem. Soc. Rev. 2011, 40, 191–206.
- 16D. J. Duchamp, R. E. Marsh, Acta Crystallogr. Sect. B 1969, 25, 5–19.
- 17F. H. Herbstein, M. Kapon, G. M. Reisner, J. Inclusion Phenom. 1987, 5, 211–214.
- 18E. Weber, M. Hecker, E. Koepp, W. Orlia, J. Chem. Soc. Perkin Trans. 2 1988, 1251–1257.
- 19
- 19aC. A. Zentner, H. W. H. Lai, J. T. Greenfield, R. A. Wiscons, M. Zeller, C. F. Campana, O. Talu, S. A. FitzGerald, J. L. C. Rowsell, Chem. Commun. 2015, 51, 11642–11645;
- 19bH. W. H. Lai, R. A. Wiscons, C. A. Zentner, M. Zeller, J. L. C. Rowsell, Cryst. Growth Des. 2016, 16, 821–833.
- 20I. Hisaki, S. Nakagawa, N. Tohnai, M. Miyata, Angew. Chem. Int. Ed. 2015, 54, 3008–3012; Angew. Chem. 2015, 127, 3051–3055.
- 21W. Yang, J. Wang, H. Wang, Z. Bao, J. C.-G. Zhao, B. Chen, Cryst. Growth Des. 2017, 17, 6132–6137.
- 22S. Nandi, D. Chakraborty, R. Vaidhyanathan, Chem. Commun. 2016, 52, 7249–7252.
- 23I. Bassanetti, S. Bracco, A. Comotti, M. Negroni, C. Bezuidenhout, S. Canossa, P. P. Mazzeo, L. Marchió, P. Sozzani, J. Mater. Chem. A 2018, 6, 14231–14239.
- 24F. Hu, C. Liu, M. Wu, J. Pang, F. Jiang, D. Yuan, M. Hong, Angew. Chem. Int. Ed. 2017, 56, 2101–2104; Angew. Chem. 2017, 129, 2133–2136.
- 25I. Hisaki, N. Ikenaka, E. Gomez, B. Cohen, N. Tohnai, A. Douhal, Chem. Eur. J. 2017, 23, 11611–11619.
- 26I. Hisaki, Y. Suzuki, E. Gomez, B. Cohen, N. Tohnai, A. Douhal, Angew. Chem. Int. Ed. 2018, 57, 12650–12655; Angew. Chem. 2018, 130, 12832–12837.
- 27I. Hisaki, Y. Suzuki, N. Tohnai, unpublished data.
- 28P. Li, P. Li, M. R. Ryder, Z. Liu, C. L. Stern, O. L. Farha, J. F. Stoddart, Angew. Chem. Int. Ed. 2019, 58, 1664–1669; Angew. Chem. 2019, 131, 1678–1683.
- 29Y. Zhou, B. Liu, X. Sun, J. Li, G. Li, Q. Huo, Y. Liu, Cryst. Growth Des. 2017, 17, 6653–6659.
- 30K. Kobayashi, T. Shirasaka, E. Horn, N. Furukawa, Tetrahedron Lett. 2000, 41, 89–93.
- 31
- 31aI. Hisaki, N. Ikenaka, N. Tohnai, M. Miyata, Chem. Commun. 2016, 52, 300–303;
- 31bI. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda, M. Tashiro, H. Tsuchida, T. Ogoshi, H. Sato, N. Tohnai, M. Miyata, J. Am. Chem. Soc. 2016, 138, 6617–6628;
- 31cI. Hisaki, S. Nakagawa, H. Sato, N. Tohnai, Chem. Commun. 2016, 52, 9781–9784.
- 32I. Hisaki, Y. Suzuki, E. Gomez, Q. Ji, N. Tohnai, T. Nakamura, A. Douhal, J. Am. Chem. Soc. 2019, 141, 2111–2121.
- 33I. Hisaki, S. Nakagawa, Y. Suzuki, N. Tohnai, Chem. Lett. 2018, 47, 1143–1146.
- 34I. Hisaki, H. Toda, H. Sato, N. Tohnai, H. Sakurai, Angew. Chem. Int. Ed. 2017, 56, 15294–15298; Angew. Chem. 2017, 129, 15496–15500.
- 35
- 35aA. E. Smith, J. Chem. Phys. 1950, 18, 150–151;
- 35bA. E. Smith, Acta Crystallogr. 1952, 5, 224–235.
- 36K. D. M. Harris, Chem. Soc. Rev. 1997, 26, 279–289.
- 37J. Yang, M. B. Dewal, S. Profeta, Jr., M. D. Smith, Y. Li, L. S. Shimizu, J. Am. Chem. Soc. 2008, 130, 612–621.
- 38M. Mastalerz, I. Oppel, Angew. Chem. Int. Ed. 2012, 51, 5252–5255; Angew. Chem. 2012, 124, 5345–5348.
- 39A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little, S. Y. Chong, B. Slater, D. P. McMahon, B. Bonillo, C. J. Stackhouse, A. Stephenson, C. M. Kane, R. Clowes, T. Hasell, A. I. Cooper, G. M. Day, Nature 2017, 543, 657–666.
- 40
- 40aJ. A. Zerkowski, J. C. MacDonald, G. M. Whitesides, Chem. Mater. 1994, 6, 1250–1257;
- 40bF. H. Beijer, R. P. Sijbesma, J. A. J. M. Vekemans, E. W. Meijer, H. Kooijman, A. K. Spek, J. Org. Chem. 1996, 61, 6371–6380.
- 41
- 41aP. Brunet, M. Simard, J. D. Wuest, J. Am. Chem. Soc. 1997, 119, 2737–2738.
- 42K. E. Maly, E. Gagnon, T. Maris, J. D. Wuest, J. Am. Chem. Soc. 2007, 129, 4306–4322.
- 43Y. He, S. Xiang, B. Chen, J. Am. Chem. Soc. 2011, 133, 14570–14573.
- 44P. Li, Y. He, J. Guang, L. Weng, J. C.-G. Zhao, S. Xiang, B. Chen, J. Am. Chem. Soc. 2014, 136, 547–549.
- 45P. Li, Y. He, Y. Zhao, L. Weng, H. Wang, R. Krishna, H. Wu, W. Xhou, M. O'Keeffe, Y. Han, B. Chen, Angew. Chem. Int. Ed. 2015, 54, 574–577; Angew. Chem. 2015, 127, 584–587.
- 46P. Li, Y. He, H. D. Arman, R. Krishna, H. Wang, L. Weng, B. Chen, Chem. Commun. 2014, 50, 13081–13084.
- 47H. Wang, B. Li, H. Wu, T.-L. Hu, Z. Yao, W. Zhou, S. Xiang, B. Chen, J. Am. Chem. Soc. 2015, 137, 9963–9970.
- 48Y. Yang, F. Yang, T.-L. Hu, S. C. King, H. Wang, H. Wu, W. Zhou, J.-R. Li, H. D. Arman, B. Chen, Cryst. Growth Des. 2016, 16, 5831–5835.
- 49W. Yang, B. Li, H. Wang, O. Alduhaish, K. Alfooty, M. A. Zayed, P. Li, H. D. Arman, B. Chen, Cryst. Growth Des. 2015, 15, 2000–2004.
- 50H. Wang, H. Wu, J. Kan, G. Chang, Z. Yao, B. Li, W. Zhou, S. Xiang, J. C.-G. Zhao, B. Chen, J. Mater. Chem. A 2017, 5, 8292–8296.
- 51
- 51aT.-H. Chen, I. Popov, W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen, O. Daugulis, A. J. Jacobson, O. Š. Miljanić, Nat. Commun. 2014, 5, 5131;
- 51bM. I. Hashim, H. T. M. Le, T.-H. Chen, Y.-S. Chen, O. Daugulis, C.-W. Hsu, A. J. Jacobson, W. Kaveevivitchai, X. Liang, T. Makarenko, O. Š. Miljanić, I. Popovs, H. V. Tran, X. Wang, C.-H. Wu, J. I. Wu, J. Am. Chem. Soc. 2018, 140, 6014–6026.
- 52W. Yan, X. Yu, T. Yan, D. Wu, E. Ning, Y. Qi, Y.-F. Han, Q. Li, Chem. Commun. 2017, 53, 3677–3680.
- 53A. R. A. Palmans, J. A. J. M. Vekemans, H. Kooijman, A. L. Spek, Chem. Commun. 1997, 2247–2248.
- 54X.-Z. Luo, X.-J. Jia, J.-H. Deng, J.-L. Zhong, H.-J. Jiu, K.-J. Wang, D.-C. Zhong, J. Am. Chem. Soc. 2013, 135, 11684–11687.
- 55W. Yang, A. Greenaway, X. Lin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, P. Hubberstey, S. Kitagawa, N. R. Champness, M. Schröder, J. Am. Chem. Soc. 2010, 132, 14457–14469.
- 56H. Yamagishi, H. Sato, A. Hori, Y. Sato, R. Matsuda, K. Kato, T. Aida, Science 2018, 361, 1242–1246.
- 57
- 57aK. Sharma, M. J. Zaworotko, Chem. Commun. 1996, 2655–2656;
- 57bB.-Q. Ma, P. Coppens, Chem. Commun. 2003, 2290–2291.
- 58J. Lü, C. Perez-Krap, M. Suyetin, N. H. Alsmail, Y. Yan, S. Yang, W. Lewis, E. Bichoutskaia, C. C. Tang, A. J. Blake, R. Cao, M. Schröder, J. Am. Chem. Soc. 2014, 136, 12828–12831.
- 59V. A. Russell, M. C. Etter, M. D. Ward, J. Am. Chem. Soc. 1994, 116, 1941–1952.
- 60
- 60aV. A. Russell, C. C. Evans, W. Li, M. D. Ward, Science 1997, 276, 575–579;
- 60bK. T. Holman, A. M. Pivovar, J. A. Swift, M. D. Ward, Acc. Chem. Res. 2001, 34, 107–118;
- 60cW. Xiao, C. Hu, M. D. Ward, J. Am. Chem. Soc. 2014, 136, 14200–14206;
- 60dA. Karmakar, R. Illathvalappil, B. Anothumakkool, A. Sen, P. Samanta, A. V. Desai, S. Kurungot, S. K. Ghosh, Angew. Chem. Int. Ed. 2016, 55, 10667–10671; Angew. Chem. 2016, 128, 10825–10829.
- 61A. Comotti, S. Bracco, A. Yamamoto, M. Beretta, T. Hirukawa, N. Tohnai, M. Miyata, P. Sozzani, J. Am. Chem. Soc. 2014, 136, 618–621.
- 62
- 62aA. Yamamoto, S. Uehara, T. Hamada, M. Miyata, I. Hisaki, N. Tohnai, Cryst. Growth Des. 2012, 12, 4600–4606;
- 62bA. Yamamoto, T. Hirukawa, I. Hisaki, M. Miyata, N. Tohnai, Tetrahedron Lett. 2013, 54, 1268–1273.
- 63G. Xing, I. Bassanetti, S. Bracco, S. M. Negroni, C. Bezuidenhout, T. Ben, P. Sozzani, A. Comotti, Chem. Sci. 2019, 10, 730–736.
- 64M. Morshedi, M. Thomas, A. Tarzia, C. J. Doonan, N. G. White, Chem. Sci. 2017, 8, 3019–3025.
- 65
- 65aM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science 2002, 295, 469–472;
- 65bH. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018–1023.