Colloidal Synthesis and Charge-Carrier Dynamics of Cs2AgSb1−yBiyX6 (X: Br, Cl; 0 ≤y ≤1) Double Perovskite Nanocrystals
Bin Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Search for more papers by this authorFeng Hong
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Search for more papers by this authorJunsheng Chen
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorYuxuan Tang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Search for more papers by this authorLi Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Search for more papers by this authorYoubao Sang
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorXusheng Xia
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorProf. Dr. Jingwei Guo
Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorHaixiang He
School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorSongqiu Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorProf. Dr. Weiqiao Deng
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Keli Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, P. R. China
Search for more papers by this authorBin Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Search for more papers by this authorFeng Hong
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Search for more papers by this authorJunsheng Chen
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorYuxuan Tang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Search for more papers by this authorLi Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Search for more papers by this authorYoubao Sang
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorXusheng Xia
University of the Chinese Academy of sciences, Beijing, 100039 P. R. China
Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorProf. Dr. Jingwei Guo
Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorHaixiang He
School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorSongqiu Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorProf. Dr. Weiqiao Deng
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Keli Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, P. R. China
Search for more papers by this authorGraphical Abstract
Caught in a trap: A series of new double perovskite nanocrystals Cs2AgSb1−yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. Intrinsic self-trapping (ca. 1–2 ps) arising from giant carrier–phonon scattering and surface-defect trapping (ca. 50–100 ps) are revealed. Slow hot-carrier cooling is observed at high pump fluence.
Abstract
A series of lead-free double perovskite nanocrystals (NCs) Cs2AgSb1−yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge-carrier relaxation. The two fast trapping processes are dominated by intrinsic self-trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface-defect trapping (ca. 50–100 ps). Slow hot-carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot-carrier relaxation are also discussed.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201811610-sup-0001-misc_information.pdf2.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. M. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692–3696.
- 2G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, M. V. Kovalenko, Nano Lett. 2015, 15, 5635–5640.
- 3Y. S. Park, S. Guo, N. S. Makarov, V. I. Klimov, ACS Nano 2015, 9, 10386–10393.
- 4J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162–7167.
- 5S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nat. Commun. 2015, 6, 8056.
- 6T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, M. L. Böhm, J. Am. Chem. Soc. 2016, 138, 2941–2944.
- 7M. Leng, Z. Chen, Y. Yang, Z. Li, K. Zeng, K. Li, G. Niu, Y. He, Q. Zhou, J. Tang, Angew. Chem. Int. Ed. 2016, 55, 15012–15016; Angew. Chem. 2016, 128, 15236–15240.
- 8B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng, S. Yang, Y. Li, T. Pullerits, W. Deng, K. Han, Angew. Chem. Int. Ed. 2017, 56, 12471–12475; Angew. Chem. 2017, 129, 12645–12649.
- 9J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, H. Song, ACS Nano 2017, 11, 9294–9302.
- 10Y. Zhang, J. Yin, M. R. Parida, G. H. Ahmed, J. Pan, O. M. Bakr, J. Brédas, O. F. Mohammed, J. Phys. Chem. Lett. 2017, 8, 3173–3177.
- 11L. Zhou, J. Liao, Z. Huang, X. Wang, Y. Xu, H. Chen, D. Kuang, C. Su, ACS Energy Lett. 2018, 3, 2613–2619.
- 12A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc. 2016, 138, 2138–2141.
- 13E. T. McClure, M. R. Ball, W. Windl, P. M. Woodward, Chem. Mater. 2016, 28, 1348–1354.
- 14M. R. Filip, S. Hillman, A. A. Haghighirad, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2016, 7, 2579–2585.
- 15G. Volonakis, A. A. Haghighirad, R. L. Milot, W. H. Sio, M. R. Filip, B. Wenger, M. B. Johnston, L. M. Herz, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2017, 8, 772–778.
- 16G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2016, 7, 1254–1259.
- 17M. R. Filip, X. Liu, A. Miglio, G. Hautier, F. Giustino, J. Phys. Chem. C 2018, 122, 158–170.
- 18B. Yang, J. Chen, S. Yang, F. Hong, L. Sun, P. Han, T. Pullerits, W. Deng, K. Han, Angew. Chem. Int. Ed. 2018, 57, 5359–5363; Angew. Chem. 2018, 130, 5457–5461.
- 19S. E. Creutz, E. N. Crites, M. C. De Siena, D. R. Gamelin, Nano Lett. 2018, 18, 1118–1123.
- 20L. Zhou, Y. Xu, B. Chen, D. Kuang, C. Su, Small 2018, 14, 1703762.
- 21Y. Bekenstein, J. C. Dahl, J. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. Yang, A. P. Alivisatos, Nano Lett. 2018, 18, 3502–3508.
- 22F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli, L. De Trizio, L. Manna, J. Am. Chem. Soc. 2018, https://doi.org/10.1021/jacs.8b07983.
- 23B. Yang, X. Mao, F. Hong, W. Meng, Y. Tang, X. Xia, S. Yang, W. Deng, K. Han, J. Am. Chem. Soc. 2018, 140, 17001—17006.
- 24K. Du, W. Meng, X. Wang, Y. Yan, D. B. Mitzi, Angew. Chem. Int. Ed. 2017, 56, 8158–8162; Angew. Chem. 2017, 129, 8270–8274.
- 25V. K. Ravi, N. Singhal, A. Nag, J. Mater. Chem. A 2018, https://doi.org/10.1039/C8TA06126B.
- 26J. Rodríguez-Carvajal, Laboratoire Léon Brillouin, CEA-CNRS, Saclay, France 2001, 35.
- 27R. T. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
- 28J. S. Manser, P. V. Kamat, Nat. Photonics 2014, 8, 737–743.
- 29H. Chung, S. I. Jung, H. J. Kim, W. Cha, E. Sim, D. Kim, W. Koh, J. Kim, Angew. Chem. Int. Ed. 2017, 56, 4160–4164; Angew. Chem. 2017, 129, 4224–4228.
- 30N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. I. Klimov, Nano Lett. 2016, 16, 2349–2362.
- 31J. Chen, K. Žídek, P. Chábera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, T. Pullerits, J. Phys. Chem. Lett. 2017, 8, 2316–2321.
- 32K. Zheng, K. Žídek, M. Abdellah, J. Chen, P. Chábera, W. Zhang, M. J. Al-Marri, T. Pullerits, ACS Energy Lett. 2016, 1, 1154–1161.
- 33K. Zheng, K. Žídek, M. Abdellah, M. E. Messing, M. J. Al-Marri, T. Pullerits, J. Phys. Chem. C 2016, 120, 3077–3084.
- 34I. Robel, B. A. Bunker, P. V. Kamat, M. Kuno, Nano Lett. 2006, 6, 1344–1349.
- 35Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, J. Am. Chem. Soc. 2014, 136, 11610–11613.
- 36S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, H. J. Snaith, Phys. Rev. Appl. 2014, 2, 034007.
- 37J. A. Steele, W. Pan, C. Martin, M. Keshavarz, E. Debroye, H. Yuan, S. Banerjee, E. Fron, D. Jonckheere, C. W. Kim, W. Baekelant, G. Niu, J. Tang, J. Vanacken, M. V. Auweraer, J. Hofkens, M. B. J. Roeffaers, Adv. Mater. 2018, 30, 1804450.
- 38E. R. Dohner, E. T. Hoke, H. I. Karunadasa, J. Am. Chem. Soc. 2014, 136, 1718–1721.
- 39M. D. Smith, H. I. Karunadasa, Acc. Chem. Res. 2018, 51, 619–627.
- 40J. A. Steele, P. Puech, M. Keshavarz, R. Yang, S. Banerjee, E. Debroye, C. W. Kim, H. Yuan, N. H. Heo, J. Vanacken, A. Walsh, J. Hofkens, M. B. J. Roeffaers, ACS Nano 2018, 12, 8081–8090.
- 41S. Ghosh, Q. Shi, B. Pradhan, P. Kumar, Z. Wang, S. Acharya, S. K. Pal, T. Pullerits, K. J. Karki, J. Phys. Chem. Lett. 2018, 9, 4245–4250.
- 42A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, L. M. Herz, Nat. Commun. 2016, 7, 11755.
- 43Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, M. C. Beard, Nat. Photonics 2016, 10, 53–59.
- 44Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Science 2017, 356, 59–62.
- 45J. Fu, Q. Xu, G. Han, B. Wu, C. H. A. Huan, M. L. Leek, T. C. Sum, Nat. Commun. 2017, 8, 1300.
- 46M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Grätzel, S. Mhaisalkar, N. Mathews, T. C. Sum, Nat. Commun. 2017, 8, 14350.
- 47M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J. M. Hodgkiss, R. H. Friend, F. Deschler, Nat. Commun. 2015, 6, 8420.
- 48J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, G. Conibeer, Nat. Commun. 2017, 8, 14120.
Citing Literature
February 18, 2019
Pages 2278-2283