Aqueous Phase Phosphorescence: Ambient Triplet Harvesting of Purely Organic Phosphors via Supramolecular Scaffolding
Suman Kuila
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Search for more papers by this authorDr. K. Venkata Rao
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Search for more papers by this authorSwadhin Garain
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Search for more papers by this authorDr. Pralok K. Samanta
Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India
Search for more papers by this authorShubhajit Das
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India
Search for more papers by this authorProf. Dr. Swapan K. Pati
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India
Search for more papers by this authorProf. Dr. Muthusamy Eswaramoorthy
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India
Search for more papers by this authorCorresponding Author
Prof. Dr. Subi J. George
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Search for more papers by this authorSuman Kuila
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Search for more papers by this authorDr. K. Venkata Rao
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Search for more papers by this authorSwadhin Garain
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Search for more papers by this authorDr. Pralok K. Samanta
Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India
Search for more papers by this authorShubhajit Das
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India
Search for more papers by this authorProf. Dr. Swapan K. Pati
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India
Search for more papers by this authorProf. Dr. Muthusamy Eswaramoorthy
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India
Search for more papers by this authorCorresponding Author
Prof. Dr. Subi J. George
New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Search for more papers by this authorDedicated to Prof. M. V. George on the occasion of his 90th birthday
Graphical Abstract
Aqueous phosphorescence: An unprecedented organic-inorganic hybrid co-assembly approach is proposed to obtain aqueous state as well as amorphous red-emitting room temperature phosphorescence. Heavy-atom effect in the NDI derivative along with its J-aggregation enhance the intersystem crossing efficiency whereas rigid and oxygen tolerant laponite templates stabilize the triplets.
Abstract
Ambient solution and amorphous state room temperature phosphorescence (RTP) from purely organic chromophores is rarely achieved. Remarkable stabilization of triplet excitons is realized to obtain deep red phosphorescence in water and in amorphous film state under ambient conditions by a unique supramolecular hybrid assembly between inorganic laponite clay and heavy atom core substituted naphthalene diimide (NDI) phosphor. Structural rigidity and oxygen tolerance of the inorganic template along with controlled molecular organization via supramolecular scaffolding are envisaged to alleviate the unprecedented aqueous phase phosphorescence.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810823-sup-0001-misc_information.pdf4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Hirata, Adv. Opt. Mater. 2017, 5, 1700116.
- 2
- 2aN. J. Turro, Modern Molecular Photochemistry, University Science Books, Sausalito, 1991, pp. 99–100;
- 2bG. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747–751.
- 3
- 3aO. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205–210;
- 3bW. Z. Yuan, X. Y. Shen, H. Zhao, J. W. Y. Lam, L. Tang, P. Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J. Z. Sun, Y. Ma, B. Z. Tang, J. Phys. Chem. C 2010, 114, 6090–6099;
- 3cZ. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685–690;
- 3dY. Gong, G. Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z. Tang, Adv. Mater. 2015, 27, 6195–6201;
- 3eM. Baroncini, G. Bergamini, P. Ceroni, Chem. Commun. 2017, 53, 2081–2093;
- 3fE. Lucenti, A. Forni, C. Botta, L. Carlucci, C. Giannini, D. Marinotto, A. Previtali, S. Righetto, E. Cariati, J. Phys. Chem. Lett. 2017, 8, 1894–1898.
- 4
- 4aJ. Xu, A. Takai, Y. Kobayashi, M. Takeuchi, Chem. Commun. 2013, 49, 8447–8449;
- 4bG. D. Gutierrez, G. T. Sazama, T. Wu, M. A. Baldo, T. M. Swager, J. Org. Chem. 2016, 81, 4789–4796;
- 4cY. Yu, M. S. Kwon, J. Jung, Y. Zeng, M. Kim, K. Chung, J. Gierschner, J. H. Youk, S. M. Borisov, J. Kim, Angew. Chem. Int. Ed. 2017, 56, 16207–16212; Angew. Chem. 2017, 129, 16425–16429;
- 4dX. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Adv. Mater. 2017, 29, 1606665.
- 5
- 5aD. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, J. Kim, J. Am. Chem. Soc. 2013, 135, 6325–6329;
- 5bM. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. Int. Ed. 2014, 53, 11177–11181; Angew. Chem. 2014, 126, 11359–11363;
- 5cM. S. Kwon, Y. Yu, C. Coburn, A. W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J. Gierschner, J. Kim, Nat. Commun. 2015, 6, 8947.
- 6
- 6aS. J. Barrow, S. Kasera, M. J. Rowland, J. del Barrio, O. A. Scherman, Chem. Rev. 2015, 115, 12320–12406;
- 6bY. Gong, H. Chen, X. Ma, H. Tian, ChemPhysChem 2016, 17, 1934–1938;
- 6cH. Chen, X. Ma, S. Wu, H. Tian, Angew. Chem. Int. Ed. 2014, 53, 14149–14152; Angew. Chem. 2014, 126, 14373–14376.
- 7
- 7aS. S. Babu, V. K. Praveen, A. Ajayaghosh, Chem. Rev. 2014, 114, 1973–2129;
- 7bL. Yang, X. Tan, Z. Wang, X. Zhang, Chem. Rev. 2015, 115, 7196–7239;
- 7cF. Biedermann, E. Elmalem, I. Ghosh, W. M. Nau, O. A. Scherman, Angew. Chem. Int. Ed. 2012, 51, 7739–7743; Angew. Chem. 2012, 124, 7859–7863.
- 8
- 8aN. Mizoshita, T. Taniab, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789–800;
- 8bJ. E. Martin, A. J. Patil, M. F. Butler, S. Mann, Adv. Funct. Mater. 2011, 21, 674–681;
- 8cK. V. Rao, A. Jain, S. J. George, J. Mater. Chem. C 2014, 2, 3055–3064.
- 9
- 9aK. K. R. Datta, C. Kulkarni, M. Eswaramoorthy, Chem. Commun. 2010, 46, 616–618;
- 9bA. Eckert, T. Rudolph, J. Guo, T. Mang, A. Walther, Adv. Mater. 2018, 30, 1802477.
- 10
- 10aK. V. Rao, K. K. R. Datta, M. Eswaramoorthy, S. J. George, Angew. Chem. Int. Ed. 2011, 50, 1179–1184; Angew. Chem. 2011, 123, 1211–1216;
- 10bK. V. Rao, K. K. R. Datta, M. Eswaramoorthy, S. J. George, Chem. Eur. J. 2012, 18, 2184–2194;
- 10cK. V. Rao, K. K. R. Datta, M. Eswaramoorthy, S. J. George, Adv. Mater. 2013, 25, 1713–1718.
- 11Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339–343.
- 12
- 12aY. Ishida, T. Shimada, D. Masui, H. Tachibana, H. Inoue, S. Takagi, J. Am. Chem. Soc. 2011, 133, 14280–14286;
- 12bA. J. Patil, E. Muthusamy, S. Mann, Angew. Chem. Int. Ed. 2004, 43, 4928–4933; Angew. Chem. 2004, 116, 5036–5041;
- 12cT. Tsukamoto, E. Ramasamy, T. Shimada, S. Takagi, V. Ramamurthy, Langmuir 2016, 32, 2920–2927;
- 12dK. Sano, Y. O. Arazoe, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, T. Aida, Angew. Chem. Int. Ed. 2018, 57, 12508–12513; Angew. Chem. 2018, 130, 12688–12693.
- 13
- 13aF. Würthner, S. Ahmed, C. Thalacker, T. Debaerdemaeker, Chem. Eur. J. 2002, 8, 4742–4750;
10.1002/1521-3765(20021018)8:20<4742::AID-CHEM4742>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 13bN. Sakai, J. Mareda, E. Vauthey, S. Matile, Chem. Commun. 2010, 46, 4225–4237.
- 14M. Kumar, S. J. George, Chem. Eur. J. 2011, 17, 11102–11106.
- 15R. E. Dawson, A. Hennig, D. P. Weimann, D. Emery, V. Ravikumar, J. Montenegro, T. Takeuchi, S. Gabutti, M. Mayor, J. Mareda, C. A. Schalley, S. Matile, Nat. Chem. 2010, 2, 533–538.
- 16
- 16aV. Martínez-Martínez, R. S. Llano, S. Furukawa, Y. Takashima, I. L. Arbeloa, S. Kitagawa, ChemPhysChem 2014, 15, 2517–2521;
- 16bJ.-Z. Liao, L. Meng, J.-H. Jia, D. Liang, X.-L. Chen, R.-M. Yu, X.-F. Kuang, C.-Z. Lu, Chem. Eur. J. 2018, 24, 10498–10502.