Inorganic Triphenylphosphine
Dr. Adam D. Gorman
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorDr. Jonathan A. Bailey
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorDr. Natalie Fey
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorTom A. Young
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorDr. Hazel A. Sparkes
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorCorresponding Author
Prof. Paul G. Pringle
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorDr. Adam D. Gorman
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorDr. Jonathan A. Bailey
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorDr. Natalie Fey
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorTom A. Young
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorDr. Hazel A. Sparkes
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorCorresponding Author
Prof. Paul G. Pringle
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorGraphical Abstract
Abstract
A completely inorganic version of one of the most famous organophosphorus compounds, triphenylphosphine, has been prepared. A comparison of the crystal structures of inorganic triphenylphosphine, PBaz3 (where Baz=B3H2N3H3) and PPh3 shows that they have superficial similarities and furthermore, the Lewis basicities of the two compounds are remarkably similar. However, their oxygenation and hydrolysis reactions are starkly different. PBaz3 reacts quantitatively with water to give PH3 and with the oxidizing agent ONMe3 to give the triply-O-inserted product P(OBaz)3, an inorganic version of triphenyl phosphite; a corresponding transformation with PPh3 is inconceivable. Thermodynamically, what drives these striking differences in the chemistry of PBaz3 and PPh3 is the great strength of the B−O bond.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810366-sup-0001-misc_information.pdf1.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Stock, E. Pohland, Ber. Dtsch. Chem. Ges. 1926, 59, 2215–2223.
- 2M. J. D. Bosdet, C. A. Jaska, W. E. Piers, T. S. Sorensen, M. Parvez, Org. Lett. 2007, 9, 1395–1398.
- 3A. J. V. Marwitz, A. N. Lamm, L. N. Zakharov, M. Vasiliu, D. A. Dixon, S. Liu, Chem. Sci. 2012, 3, 825–829.
- 4X. Y. Wang, A. Narita, X. Feng, K. Müllen, J. Am. Chem. Soc. 2015, 137, 7668–7671.
- 5X. Y. Wang, J. Y. Wang, J. Pei, Chem. Eur. J. 2015, 21, 3528–3539.
- 6H. Huang, Z. Pan, C. Cui, Chem. Commun. 2016, 52, 4227–4230.
- 7Z. Liu, J. S. A. Ishibashi, C. Darrigan, A. Dargelos, A. Chrostowska, B. Li, M. Vasiliu, D. A. Dixon, S. Y. Liu, J. Am. Chem. Soc. 2017, 139, 6082–6085.
- 8C. Baldock, J. B. Rafferty, S. E. Sedelnikova, P. J. Baker, A. R. Stuitje, A. R. Slabas, T. R. Hawkes, D. W. Rice, Science 1996, 274, 2107–2110.
- 9L. Liu, A. J. Marwitz, B. W. Matthews, S.-Y. Liu, Angew. Chem. Int. Ed. 2009, 48, 6817–6819; Angew. Chem. 2009, 121, 6949–6951.
- 10D. H. Knack, J. L. Marshall, G. P. Harlow, A. Dudzik, M. Szaleniec, S. Liu, J. Heider, Angew. Chem. Int. Ed. 2013, 52, 2599–2601; Angew. Chem. 2013, 125, 2660–2662.
- 11F. J. R. Rombouts, F. Tovar, N. Austin, G. Tresadern, A. A. Trabanco, J. Med. Chem. 2015, 58, 9287–9295.
- 12H. Lee, M. Fischer, B. K. Shoichet, S. Y. Liu, J. Am. Chem. Soc. 2016, 138, 12021–12024.
- 13P. Zhao, D. O. Nettleton, R. G. Karki, F. J. Zécri, S. Y. Liu, ChemMedChem 2017, 12, 358–361.
- 14A. Staubitz, A. P. M. Robertson, I. Manners, Chem. Rev. 2010, 110, 4079–4124.
- 15G. Chen, L. N. Zakharov, M. Bowden, A. Karkamkar, S. M. Whittemore, E. B. Garner, T. C. Mikulas, D. A. Dixon, T. Autrey, S.-Y. Liu, J. Am. Chem. Soc. 2015, 137, 134–137.
- 16H. C. Johnson, T. N. Hooper, A. S. Weller in Topics in Organometallic Chemistry, Vol. 49 (Eds.: ), Springer International Publishing, Cham, 2015, pp. 153–220.
- 17A. Rossin, M. Peruzzini, Chem. Rev. 2016, 116, 8848–8872.
- 18Z. Mo, A. Rit, J. Campos, E. L. Kolychev, S. Aldridge, J. Am. Chem. Soc. 2016, 138, 3306–3309.
- 19W. Shen, M. Li, Y. Li, S. Wang, Inorg. Chim. Acta 2007, 360, 619–624.
- 20A. K. Phukan, A. K. Guha, B. Silvi, Dalton Trans. 2010, 39, 4126–4137.
- 21D. Wu, L. Kong, Y. Li, R. Ganguly, R. Kinjo, Nat. Commun. 2015, 6, 7340.
- 22H. Braunschweig, A. Damme, R. D. Dewhurst, A. Vargas, Nat. Chem. 2013, 5, 115–121.
- 23R. Islas, E. Chamorro, J. Robles, T. Heine, J. C. Santos, G. Merino, Struct. Chem. 2007, 18, 833–839.
- 24D. E. Bean, P. W. Fowler, J. Phys. Chem. A 2011, 115, 13649–13656.
- 25B. Kiran, A. K. Phukan, E. D. Jemmis, Inorg. Chem. 2001, 40, 3615–3618.
- 26A. W. Laubengayer, O. T. Beachley, R. F. Porter, Inorg. Chem. 1965, 4, 578–582.
- 27M. K. Kesharwani, M. Suresh, A. Das, B. Ganguly, Tetrahedron Lett. 2011, 52, 3636–3639.
- 28C. A. Brown, A. W. Laubengayer, J. Am. Chem. Soc. 1955, 77, 3699–3700.
- 29C. K. Narula, R. Schaeffer, A. Datye, R. T. Paine, Inorg. Chem. 1989, 28, 4053–4055.
- 30E. Framery, M. Vaultier, Heteroat. Chem. 2000, 11, 218–225.
- 31Y. Yamamoto, K. Miyamoto, J. Umeda, Y. Nakatani, T. Yamamoto, N. Miyura, J. Organomet. Chem. 2006, 691, 4909–4917.
- 32H. Braunschweig, H. Green, K. Radacki, K. Uttinger, Dalton Trans. 2008, 3531–3534.
- 33D. Bonifazi, F. Fasano, M. M. Lorenzo-Garcia, D. Marinelli, H. Oubaha, J. Tasseroul, Chem. Commun. 2015, 51, 15222–15236.
- 34O. T. Beachley, Inorg. Chem. 1969, 8, 2665–2667.
- 35O. T. Beachley, Inorg. Chem. 1969, 8, 981–985.
- 36O. T. Beachley, T. R. Durkin, Inorg. Chem. 1973, 12, 1128–1130.
- 37G. H. Lee, R. F. Porter, Inorg. Chem. 1967, 6, 648–652.
- 38J. A. Bailey, P. G. Pringle, Coord. Chem. Rev. 2015, 297–298, 77–90.
- 39G. Wittig, U. Schollkopf, Chem. Ber. 1954, 87, 1318–1330.
- 40D. Evans, J. A. Osborn, G. Wilkinson, J. Chem. Soc. A 1968, 3133–3142.
- 41J. A. Bailey, M. Ploeger, P. G. Pringle, Inorg. Chem. 2014, 53, 7763–7769.
- 42B. Ziemer, A. Rabis, H. U. Steinberger, Acta Crystallogr. Sect. C 2000, 56, e 58–e59.
- 43H. A. Bent, Chem. Rev. 1961, 61, 275–311.
- 44T. E. Müller, D. M. P. Mingos, Transition Met. Chem. 1995, 20, 533–539.
- 45E. N. Daley, C. M. Vogels, S. J. Geier, A. Decken, S. Doherty, S. A. Westcott, Angew. Chem. Int. Ed. 2015, 54, 2121–2125; Angew. Chem. 2015, 127, 2149–2153.
- 46M. L. Schirmer, S. Jopp, J. Holz, A. Spannenberg, T. Werner, Adv. Synth. Catal. 2016, 358, 26–29.
- 47J. A. Bailey, H. A. Sparkes, P. G. Pringle, Chem. Eur. J. 2015, 21, 5360–5363.