Polymerizing Like Mussels Do: Toward Synthetic Mussel Foot Proteins and Resistant Glues
Justus Horsch
Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
Search for more papers by this authorDr. Patrick Wilke
Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
Search for more papers by this authorMatthias Pretzler
Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
Search for more papers by this authorMaximilian Seuss
Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorInga Melnyk
Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorDario Remmler
Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
Search for more papers by this authorProf. Andreas Fery
Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
Technische Universität Dresden, Chair of Physical Chemistry of Polymeric Materials, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorProf. Annette Rompel
Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
Search for more papers by this authorCorresponding Author
Prof. Hans G. Börner
Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
Search for more papers by this authorJustus Horsch
Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
Search for more papers by this authorDr. Patrick Wilke
Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
Search for more papers by this authorMatthias Pretzler
Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
Search for more papers by this authorMaximilian Seuss
Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorInga Melnyk
Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorDario Remmler
Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
Search for more papers by this authorProf. Andreas Fery
Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
Technische Universität Dresden, Chair of Physical Chemistry of Polymeric Materials, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorProf. Annette Rompel
Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
Search for more papers by this authorCorresponding Author
Prof. Hans G. Börner
Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
Search for more papers by this authorGraphical Abstract
Mussel glue protein mimics: Adhesive mussel-inspired protein analogues were prepared by an enzyme-induced polymerization of oligopeptides. The polymers are generated by the formation of cysteinyldopa linkages that contribute to cohesion and adhesion of the protein analogues. Aspects of adhesion properties of mussel foot proteins were mimicked without the need to extract and purify or express native proteins.
Abstract
A novel strategy to generate adhesive protein analogues by enzyme-induced polymerization of peptides is reported. Peptide polymerization relies on tyrosinase oxidation of tyrosine residues to Dopaquinones, which rapidly form cysteinyldopa-moieties with free thiols from cysteine residues, thereby linking unimers and generating adhesive polymers. The resulting artificial protein analogues show strong adsorption to different surfaces, even resisting hypersaline conditions. Remarkable adhesion energies of up to 10.9 mJ m−2 are found in single adhesion events and average values are superior to those reported for mussel foot proteins that constitute the gluing interfaces.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201809587-sup-0001-misc_information.pdf13.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Lee, B. P. Lee, P. B. Messersmith, Nature 2007, 448, 338–341;
- 1bB. K. Ahn, S. Das, R. Linstadt, Y. Kaufman, N. R. Martinez-Rodriguez, R. Mirshafian, E. Kesselman, Y. Talmon, B. H. Lipshutz, J. N. Israelachvili, J. H. Waite, Nat. Commun. 2015, 6, 8663;
- 1cP. Wilke, N. Helfricht, A. Mark, G. Papastavrou, D. Faivre, H. G. Börner, J. Am. Chem. Soc. 2014, 136, 12667—12674;
- 1dQ. Wei, K. Achazi, H. Liebe, A. Schulz, P.-L. M. Noeske, I. Grunwald, R. Haag, Angew. Chem. Int. Ed. 2014, 53, 11650–11655; Angew. Chem. 2014, 126, 11834–11840;
- 1eH. Woehlk, J. Steinkoenig, C. Lang, L. Michalek, V. Trouillet, P. Krolla, A. S. Goldmann, L. Barner, J. P. Blinco, C. Barner-Kowollik, K. E. Fairfull-Smith, Langmuir 2018, 34, 3264–3274.
- 2J. H. Waiter, Ann. N. Y. Acad. Sci. 1999, 875, 301–309.
- 3
- 3aE. Faure, C. Falentin-Daudré, C. Jérôme, J. Lyskawa, D. Fournier, P. Woisel, C. Detrembleur, Prog. Polym. Sci. 2013, 38, 236–270;
- 3bB. P. Lee, P. B. Messersmith, J. N. Israelachvili, J. H. Waite, Annu. Rev. Mater. Res. 2011, 41, 99–132.
- 4
- 4aB. P. Lee, J. L. Dalsin, P. B. Messersmith, Biomacromolecules 2002, 3, 1038–1047;
- 4bP. Wilke, H. G. Börner, ACS Macro Lett. 2012, 1, 871–875;
- 4cA. Lampel, S. A. McPhee, H.-A. Park, G. G. Scott, S. Humagain, D. R. Hekstra, B. Yoo, P. W. J. M. Frederix, T.-D. Li, R. R. Abzalimov, S. G. Greenbaum, T. Tuttle, C. Hu, C. J. Bettinger, R. V. Ulijn, Science 2017, 356, 1064–1068.
- 5
- 5aD. S. Hwang, H. Zeng, Q. Lu, J. Israelachvili, J. H. Waite, Soft Matter 2012, 8, 5640–5648;
- 5bQ. Lu, D. S. Hwang, Y. Liu, H. Zeng, Biomaterials 2012, 33, 1903–1911;
- 5cQ. Lu, D. X. Oh, Y. Lee, Y. Jho, D. S. Hwang, H. Zeng, Angew. Chem. Int. Ed. 2013, 52, 3944–3948; Angew. Chem. 2013, 125, 4036–4040.
- 6J. H. Waite, Comp. Biochem. Physiol. Part B 1990, 97, 19–29.
- 7M. J. Harrington, A. Masic, N. Holten-Andersen, J. H. Waite, P. Fratzl, Science 2010, 328, 216–220.
- 8L. M. McDowell, L. A. Burzio, J. H. Waite, J. Schaefer, J. Biol. Chem. 1999, 274, 20293–20295.
- 9L. V. Zuccarello, Tissue Cell 1981, 13, 701–713.
- 10M. Yu, J. Hwang, T. J. Deming, J. Am. Chem. Soc. 1999, 121, 5825–5826.
- 11
- 11aT. Kato, S. Ito, K. Fujita, Biochim. Biophys. Acta Gen. Subj. 1986, 881, 415–421;
- 11bD. C. S. Tse, R. L. McCreery, R. N. Adams, J. Med. Chem. 1976, 19, 37–40.
- 12
- 12aH. Zhao, J. H. Waite, Biochemistry 2005, 44, 15915–15923;
- 12bH. Zhao, J. H. Waite, J. Biol. Chem. 2006, 281, 26150–26158.
- 13J. H. Waite, J. Biol. Chem. 1983, 258, 2911–2915.
- 14M. Pretzler, A. Bijelic, A. Rompel, Sci. Rep. 2017, 7, 1810.
- 15A. Flurkey, J. Cooksey, A. Reddy, K. Spoonmore, A. Rescigno, J. Inlow, W. H. Flurkey, J. Agric. Food Chem. 2008, 56, 4760–4768.
- 16S. G. Mauracher, C. Molitor, C. Michael, M. Kragl, A. Rizzi, A. Rompel, Phytochemistry 2014, 99, 14–25.
- 17T. S. Fischer, J. Steinkoenig, H. Woehlk, J. P. Blinco, K. Fairfull-Smith, C. Barner-Kowollik, Polym. Chem. 2017, 8, 5269–5274.
- 18S. C. T. Nicklisch, J. E. Spahn, H. Zhou, C. M. Gruian, J. H. Waite, Biochemistry 2016, 55, 2022–2030.
- 19M. V. Voinova, M. Rodahl, M. Jonson, B. Kasemo, Phys. Scr. 1999, 59, 391.
- 20G. Sauerbrey, Z. Phys. 1959, 155, 206–222.
- 21F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, H. Elwing, Anal. Chem. 2001, 73, 5796–5804.
- 22Q. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T. H. Anderson, J. H. Waite, J. N. Israelachvili, Proc. Natl. Acad. Sci. USA 2007, 104, 3782–3786.
- 23Q. Lu, E. Danner, J. H. Waite, J. N. Israelachvili, H. Zeng, D. S. Hwang, J. R. Soc. Interface 2013, 10, 20120759.
- 24J. Yu, Y. Kan, M. Rapp, E. Danner, W. Wei, S. Das, D. R. Miller, Y. Chen, J. H. Waite, J. N. Israelachvili, Proc. Natl. Acad. Sci. USA 2013, 110, 15680–15685.