Selective Nitrogen-Atom Transfer Driven by a Highly Efficient Intersystem Crossing in the [CeON]+/CH4 System
Corresponding Author
Prof. Dr. Shaodong Zhou
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorDr. Xiaoyan Sun
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorDr. Lei Yue
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorDr. Cheng Guo
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorDr. Maria Schlangen
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Helmut Schwarz
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Shaodong Zhou
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorDr. Xiaoyan Sun
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorDr. Lei Yue
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorDr. Cheng Guo
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorDr. Maria Schlangen
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Helmut Schwarz
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorGraphical Abstract
The one and only: Nitrogen-atom transfer from the cluster ion to methane was observed as the only reaction channel for thermal gas-phase reactions of [CeON]+ with methane. Based on computational work, the neutral molecule formed corresponds to either CH2NH2 or CH3NH. This reaction benefits from a rather weak OCe+−N bond and a highly efficient intersystem crossing.
Abstract
The thermal gas-phase reactions of [CeON]+ with methane have been explored by FT-ICR mass spectrometry and high-level quantum-chemical calculations. Nitrogen-atom transfer from the cluster ion to methane was observed as the only reaction channel. Based on computational work, the neutral molecule formed corresponds to either CH2NH2 or CH3NH. In addition to a rather weak OCe+−N bond, this reaction benefits from a highly efficient intersystem crossing. Mechanistic aspects and the associated electronic origins are discussed, and a detailed comparison of [CeON]+, [CeO]+, [CeN]+, [CeO2]+, and atomic N in their reactions with CH4 is given.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201809583-sup-0001-misc_information.pdf577.7 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Zhang, Z. Y. Liu, S. H. Zhang, N. Akter, R. M. Palomino, D. Voychok, I. Orozco, D. Salazar, J. A. Rodriguez, J. Llorca, J. Lee, D. Kim, W. Q. Xu, A. I. Frenkel, Y. Y. Li, T. Kim, S. D. Senanayake, ACS Catal. 2018, 8, 3550–3560;
- 1bA. Dubey, S. K. Kolekar, C. S. Gopinath, ChemCatChem 2016, 8, 3650–3656;
- 1cS. Mukhopadhyay, A. T. Bell, Adv. Synth. Catal. 2004, 346, 913–916.
- 2H. H. Cornehl, C. Heinemann, D. Schröder, H. Schwarz, Organometallics 1995, 14, 992–999.
- 3H. H. Cornehl, R. Wesendrup, J. N. Harvey, H. Schwarz, J. Chem. Soc. Perkin Trans. 2 1997, 2283–2291.
- 4J. Marçalo, A. P. deMatos, W. J. Evans, Organometallics 1997, 16, 3845–3850.
- 5H. H. Cornehl, G. Hornung, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 9960–9965.
- 6S. Zhou, M. Schlangen, H. Schwarz, Chem. Eur. J. 2015, 21, 2123–2131.
- 7S. Zhou, J. Li, M. Schlangen, H. Schwarz, Chem. Eur. J. 2016, 22, 3073–3076.
- 8J. A. Carretas, J. Marcalo, A. P. de Matos, Int. J. Mass Spectrom. 2004, 234, 51–61.
- 9J. Marçalo, M. Santos, A. P. de Matos, J. K. Gibson, R. G. Haire, J. Phys. Chem. A 2008, 112, 12647–12656.
- 10H. H. Cornehl, R. Wesendrup, M. Diefenbach, H. Schwarz, Chem. Eur. J. 1997, 3, 1083–1090.
- 11C. Heinemann, H. H. Cornehl, D. Schröder, M. Dolg, H. Schwarz, Inorg. Chem. 1996, 35, 2463–2475.
- 12X. N. Wu, Y. X. Zhao, W. Xue, Z. C. Wang, S. G. He, X. L. Ding, Phys. Chem. Chem. Phys. 2010, 12, 3984–3997.
- 13J. B. Ma, J. H. Meng, S. G. He, ChemPhysChem 2016, 17, 1112–1118.
- 14S. Zhou, J. Li, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2017, 56, 413–416; Angew. Chem. 2017, 129, 424–428.
- 15
- 15aA. Bockholt, I. S. Harding, R. M. Nix, J. Chem. Soc. Faraday Trans. 1997, 93, 3869–3878;
- 15bD. Hasenberg, L. D. Schmidt, J. Catal. 1986, 97, 156–168.
- 16
- 16aL. Andrussow, Angew. Chem. 1935, 48, 593–595;
- 16bL. Andrussow, Ber. Dtsch. Chem. Ges. 1927, 60, 2005–2018.
- 17
- 17aM. Diefenbach, M. Brönstrup, M. Aschi, D. Schröder, H. Schwarz, J. Am. Chem. Soc. 1999, 121, 10614–10625;
- 17bM. Aschi, M. Brönstrup, M. Diefenbach, J. N. Harvey, D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. 1998, 37, 829–832;
10.1002/(SICI)1521-3773(19980403)37:6<829::AID-ANIE829>3.0.CO;2-N CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 858–861.
- 18
- 18aK. Koszinowski, D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. 2004, 43, 121–124; Angew. Chem. 2004, 116, 124–127;
- 18bK. Koszinowski, D. Schröder, H. Schwarz, J. Am. Chem. Soc. 2003, 125, 3676–3677.
- 19S. Zhou, J. Li, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2016, 55, 11678–11681; Angew. Chem. 2016, 128, 11851–11855.
- 20S. Zhou, J. Li, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2016, 55, 14863–14866; Angew. Chem. 2016, 128, 15085–15089.
- 21
- 21aJ. P. Boyd, M. Schlangen, A. Grohmann, H. Schwarz, Helv. Chim. Acta 2008, 91, 1430–1434;
- 21bfor other, intracomplex C-N coupling processes, of high-valent [LFeN]2+, see: M. Schlangen, J. Neugebauer, M. Reiher, D. Schröder, J. P. López, M. Haryono, F. W. Heinemann, A. Grohmann, H. Schwarz, J. Am. Chem. Soc. 2008, 130, 4285–4294;
- 21cfor a review on mechanistic aspects of metal-mediated C−N coupling in the gas phase, see: R. Kretschmer, M. Schlangen, H. Schwarz in Understanding Organometallic Reaction Mechanisms and Catalysis: Computational and Experimental Tools (Ed. ), Wiley-VCH, Weinheim, 2015, pp. 1–16.
- 22M. T. Bowers, J. B. Laudenslager, J. Chem. Phys. 1972, 56, 4711–4712.
- 23K. Levsen, H. Schwarz, Mass Spectrom. Rev. 1983, 2, 77–148.
- 24For selected reviews, see:
- 24aJ. N. Harvey, WIREs Comput. Mol. Sci. 2014, 4, 1–14;
- 24bS. Shaik, Int. J. Mass Spectrom. 2013, 354, 5–14;
- 24cS. Shaik, H. Hirao, D. Kumar, Acc. Chem. Res. 2007, 40, 532–542;
- 24dW. Nam, Acc. Chem. Res. 2007, 40, 522–531;
- 24eP. E. M. Siegbahn, T. Borowski, Acc. Chem. Res. 2006, 39, 729–738;
- 24fS. Shaik, D. Kumar, S. P. de Visser, A. Altun, W. Thiel, Chem. Rev. 2005, 105, 2279–2328;
- 24gH. Schwarz, Int. J. Mass Spectrom. 2004, 237, 75–105;
- 24hS. Shaik, S. P. de Visser, F. Ogliaro, H. Schwarz, D. Schröder, Curr. Opin. Chem. Biol. 2002, 6, 556–567;
- 24iD. Schröder, S. Shaik, H. Schwarz, Acc. Chem. Res. 2000, 33, 139–145;
- 24jS. Shaik, M. Filatov, D. Schröder, H. Schwarz, Chem. Eur. J. 1998, 4, 193–199;
- 24kP. B. Armentrout, Science 1991, 251, 175–179.
- 25J. N. Harvey, M. Aschi, H. Schwarz, W. Koch, Theor. Chem. Acc. 1998, 99, 95–99.
- 26The probabilities for ISC were estimated using the Landau–Zener model. For details, see: C. Zener, Proc. R. Soc. London Ser. A 1932, 137, 696–702.
- 27 CRC Handbook of Chemistry and Physics, CRC, Boca Raton, 2010.
- 28For recent reviews on HAT, see:
- 28aM. Salamone, M. Bietti, Acc. Chem. Res. 2015, 48, 2895–2903;
- 28bH. Schwarz, Chem. Phys. Lett. 2015, 629, 91–101;
- 28cC. T. Saouma, J. M. Mayer, Chem. Sci. 2014, 5, 21–31;
- 28dN. Dietl, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2012, 51, 5544–5555; Angew. Chem. 2012, 124, 5638–5650;
- 28eW. Z. Lai, C. S. Li, H. Chen, S. Shaik, Angew. Chem. Int. Ed. 2012, 51, 5556–5578; Angew. Chem. 2012, 124, 5652–5676;
- 28fJ. M. Mayer, Acc. Chem. Res. 2011, 44, 36–46.
- 29Data derived at the CCSD(T,full)/BSII//BMK-D3(BJ)/BSI level of theory.
- 30C. Ottinger, A. Kowalski, Chem. Phys. Lett. 2001, 339, 53–63.
- 31O. Roberto-Neto, F. R. Ornellas, F. B. C. Machado, Chem. Phys. Lett. 2006, 432, 403–408.
- 32According to the estimation using the Landau–Zener model, as long as the external energy input is enough for surmounting 4TS5/6, the ISC probability at MECP2 amounts to only 0.17, and this number decreases further when the energy input increases; at an external energy E>3 eV, the ISC probability drops below 0.05.