Enzymatic Cascade Reactions in Biosynthesis
Prof. Dr. Christopher T. Walsh
Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Bradley S. Moore
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093 USA
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorProf. Dr. Christopher T. Walsh
Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Bradley S. Moore
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093 USA
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorGraphical Abstract
Fantastic four: Generally, enzymes are highly selective catalysts for single reactions. However, some enzymes instead control a series of reactions in a cascade-like fashion. This Review highlights four types of enzymatic cascade strategies, mediated by nucleophilic, electrophilic, pericyclic, and radical-based reactions, observed in the biosynthesis of complex natural products
Abstract
Enzyme-mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron-based enzymes use O2 to generate high valent iron-oxo species to homolyze unactivated C−H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S-adenosylmethionine (SAM) to generate the 5′-deoxyadenosyl radical as a powerful oxidant to initiate C−H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as “thwarted oxygenases”.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aB. M. Trost, Science 1991, 254, 1471–1477;
- 1bB. M. Trost, Angew. Chem. Int. Ed. Engl. 1995, 34, 259–281; Angew. Chem. 1995, 107, 285–307.
- 2
- 2aP. A. Wender, B. L. Miller, Nature 2009, 460, 197–201;
- 2bT. Gaich, P. S. Baran, J. Org. Chem. 2010, 75, 4657–4673.
- 3
- 3aK. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. Int. Ed. 2006, 45, 7134–7186; Angew. Chem. 2006, 118, 7292–7344;
- 3bK. C. Nicolaou, J. S. Chen, Chem. Soc. Rev. 2009, 38, 2993–3009.
- 4
- 4aR. Robinson, J. Chem. Soc. Trans. 1917, 111, 762–768;
- 4bJ. W. Medley, M. Movassaghi, Chem. Commun. 2013, 49, 10775–10777.
- 5W. S. Johnson, M. B. Gravestock, B. E. McCarry, J. Am. Chem. Soc. 1971, 93, 4332–4334.
- 6P. Baran, J. Am. Chem. Soc. 2018, 140, 4751–4755.
- 7S. V. Ley, D. S. Brown, J. A. Clase, A. J. Fairbanks, I. C. Lennon, H. M. I. Osborn, E. S. E. Stokesé (née Owen), D. J. Wadsworth, J. Chem. Soc. Perkin Trans. 1 1998, 2259–2276.
- 8A. Zakarian, A. Batch, R. A. Holton, J. Am. Chem. Soc. 2003, 125, 7822–7824.
- 9K. A. Parker, D. Fokas, J. Org. Chem. 2006, 71, 449–455.
- 10G. I. Elliott, J. Velcicky, H. Ishikawa, Y. Li, D. L. Boger, Angew. Chem. Int. Ed. 2006, 45, 620–622; Angew. Chem. 2006, 118, 636–638.
- 11M. W. Pfeiffer, A. J. Phillips, J. Am. Chem. Soc. 2005, 127, 5334–5335.
- 12K. R. Gleitsman, R. N. Sengupta, D. Herschlag, RNA 2017, 23, 1745–1753.
- 13C. T. Walsh, Y. Tang, Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery, Royal Society of Chemistry, London, 2017.
- 14G. M. Lin, R. M. McCarty, H. W. Liu, Angew. Chem. Int. Ed. 2017, 56, 3446–3489; Angew. Chem. 2017, 129, 3498–3542.
- 15C. T. Walsh, M. A. Fischbach, J. Am. Chem. Soc. 2010, 132, 2469–2493.
- 16R. R. Mendel, J. Biol. Chem. 2013, 288, 13165–13172.
- 17D. E. Cane, J. Biol. Chem. 2010, 285, 27517–27523.
- 18L. B. Pickens, Y. Tang, J. Biol. Chem. 2010, 285, 27509–27515.
- 19R. Finking, M. A. Marahiel, Annu. Rev. Microbiol. 2004, 58, 453–488.
- 20
- 20aT. Schwecke, J. F. Aparacio, I. Molnár, A. König, L. E. Khaw, S. F. Haydock, M. Oliynyk, P. Caffrey, J. Cortés, J. B. Lester, Proc. Natl. Acad. Sci. USA 1995, 92, 7839–7843;
- 20bJ. F. Aparicio, I. Molnar, T. Schwecke, A. Konig, S. F. Haydoc, L. E. Khaw, J. Staunton, P. F. Leadlay, Gene 1996, 169, 9–16;
- 20cG. J. Gatto, S. M. Mcloughlin, N. L. Kelleher, C. T. Walsh, Biochemistry 2005, 44, 5993–6002.
- 21C. T. Walsh, S. W. Haynes, B. D. Ames, X. Gao, Y. Tang, ACS Chem. Biol. 2013, 8, 1366–1382.
- 22
- 22aP. Pöplau, S. Frank, B. I. Morinaka, J. Piel, Angew. Chem. Int. Ed. 2013, 52, 13215–13218; Angew. Chem. 2013, 125, 13457–13460;
- 22bG. Berkhan, F. Hahn, Angew. Chem. Int. Ed. 2014, 53, 14240–14244; Angew. Chem. 2014, 126, 14464–14468;
- 22cH. Luhavaya, M. V. Dias, S. R. Williams, H. Hong, L. G. de Oliveira, P. F. Leadlay, Angew. Chem. Int. Ed. 2015, 54, 13622–13625; Angew. Chem. 2015, 127, 13826–13829.
- 23A. Zipperer, M. C. Konnerth, C. Laux, A. Berscheid, D. Janek, M. Marschal, M. Burian, N. A. Schilling, C. Slavetinsky, C. Weidenmaier, M. Willman, H. Kahlbacher, B. Schittek, H. Brotz-Osterhelt, S. Grond, A. Peschel, B. Krismer, Nature 2016, 535, 511–516.
- 24J. L. Palmer, R. H. Abeles, J. Biol. Chem. 1979, 254, 1217–1226.
- 25
- 25aF. Geu-Flores, N. Sherden, V. Courdavault, V. Burlat, W. Glenn, C. Wu, E. Nims, Y. Cui, S. O'Connor, Nature 2012, 492, 138–142;
- 25bH. Kries, L. Caputi, C. Stevenson, M. Kamileen, N. Sherden, F. Geu-Flores, D. Lawson, S. O'Connor, Nat. Chem. Biol. 2016, 12, 6–8.
- 26
- 26aJ. Antosch, F. Schaefers, T. Gulder, Angew. Chem. Int. Ed. 2014, 53, 3011–3014; Angew. Chem. 2014, 126, 3055–3058;
- 26bG. Zhang, W. Zhang, Q. Zhang, T. Shi, L. Ma, Y. Zhu, S. Li, H. Zhang, Y. Zhao, R. Shi, C. Zhang, Angew. Chem. Int. Ed. 2014, 53, 4840–4844; Angew. Chem. 2014, 126, 4940–4944.
- 27
- 27aK. Kasahara, T. Miyamoto, T. Fujimoto, H. Oguri, T. Tokiwano, H. Oikawa, Y. Ebizuka, I. Fujii, ChemBioChem 2010, 11, 1245–1252;
- 27bW. Kim, C. M. Park, J. J. Park, H. O. Akamatsu, T. L. Peever, M. Xian, D. R. Gang, G. Vandemark, W. Chen, Mol. Plant-Microbe Interact. 2015, 28, 482–496.
- 28M. P. Beam, M. A. Bosserman, N. Noinaj, M. Whenkel, J. Rohr, Biochemistry 2009, 48, 4476–4487.
- 29
- 29aL. Xiang, J. A. Kalaitzis, B. S. Moore, Proc. Natl. Acad. Sci. USA 2004, 101, 15609–15614;
- 29bR. Teufel, A. Miyanaga, Q. Michaudel, F. Stull, G. Louie, J. P. Noel, P. S. Baran, B. Palfey, B. S. Moore, Nature 2013, 503, 552–556.
- 30
- 30aR. Teufel, F. Stull, M. J. Meehan, Q. Michaudel, P. C. Dorrestein, B. Palfrey, B. S. Moore, J. Am. Chem. Soc. 2015, 137, 8078–8085;
- 30bR. Saleem-Batcha, F. Stull, J. N. Sanders, B. S. Moore, B. A. Palfey, K. N. Houk, R. Teufel, Proc. Natl. Acad. Sci. USA 2018, 115, 4909–4914.
- 31
- 31aQ. Cheng, L. Xiang, M. Izumikawa, D. Meluzzi, B. S. Moore, Nat. Chem. Biol. 2007, 3, 557–558;
- 31bJ. A. Kalaitzis, Q. Cheng, P. M. Thomas, N. L. Kelleher, B. S. Moore, J. Nat. Prod. 2009, 72, 469–472.
- 32B. T. Ueberbacher, M. Hall, K. Faber, Nat. Prod. Rep. 2012, 29, 337–350.
- 33D. W. Christianson, Chem. Rev. 2017, 117, 11570–11648.
- 34C. A. Lesburg, G. Zhai, D. E. Cane, D. W. Christianson, Science 1997, 277, 1820–1824.
- 35C. N. Tetzlaff, Z. You, D. E. Cane, S. Takamtsu, S. Omura, H. Ikeda, Biochemistry 2006, 45, 6179–6186.
- 36K. M. Y. Jin, R. M. Coates, R. Croteau, D. W. Christianson, Nature 2011, 469, 116–120.
- 37J. Guerra-Bubb, R. Croteau, R. M. Williams, Nat. Prod. Rep. 2012, 29, 683–696.
- 38
- 38aG. Siedenburg, D. Jendrossek, Appl. Environ. Microbiol. 2011, 77, 3905–3915;
- 38bK. U. Wendt, K. Poralla, G. E. Schulz, Science 1997, 277, 1811–1815.
- 39T. Awakawa, L. Zhang, T. Wakimoto, S. Hoshino, T. Mori, T. Ito, J. Ishikawa, M. Tanner, I. Abe, J. Am. Chem. Soc. 2014, 136, 9910–9913.
- 40J. H. Cardellina, F. J. Marner, R. E. Moore, Science 1979, 204, 193–195.
- 41S. E. Ongley, X. Bian, Y. Zhang, R. Chau, W. H. Gerwick, R. Muller, B. A. Neilan, ACS Chem. Biol. 2013, 8, 1888–1893.
- 42
- 42aL. Kaysser, P. Bernhardt, S. J. Nam, S. Loesgen, J. G. Ruby, P. Skewes-Cox, P. R. Jensen, W. Fenical, B. S. Moore, J. Am. Chem. Soc. 2012, 134, 11988–11991;
- 42bS. Diethelm, R. Teufel, L. Kaysser, B. S. Moore, Angew. Chem. Int. Ed. 2014, 53, 11023–11026; Angew. Chem. 2014, 126, 11203–11206.
- 43Z. D. Miles, S. Diethelm, H. P. Pepper, D. M. Huang, J. H. George, B. S. Moore, Nat. Chem. 2017, 9, 1235–1242.
- 44
- 44aH. P. Pepper, J. H. George, Angew. Chem. Int. Ed. 2013, 52, 12170–12173; Angew. Chem. 2013, 125, 12392–12395;
- 44bR. Meier, S. Strych, D. Trauner, J. Org. Chem. 2014, 16, 2634–2637.
- 45R. Teufel, L. Kaysser, M. T. Villaume, S. Diethelm, M. K. Carbullido, P. S. Baran, B. S. Moore, Angew. Chem. Int. Ed. 2014, 53, 11019–11022; Angew. Chem. 2014, 126, 11199–11202.
- 46B. S. Moore, Synlett 2017, 29, 401–409.
- 47K. U. Wendt, Angew. Chem. Int. Ed. 2005, 44, 3966–3971; Angew. Chem. 2005, 117, 4032–4037.
- 48
- 48aR. Thimmappa, K. Geisler, T. Louveau, P. O'Maille, A. Osbourn, Annu. Rev. Plant Biol. 2014, 65, 225–257;
- 48bT. Hoshino, Org. Biomol. Chem. 2017, 15, 2869–2891.
- 49S. Lodeiro, Q. Xiong, W. K. Wilson, M. D. Kolesnikova, C. S. Onak, S. P. Matsuda, J. Am. Chem. Soc. 2007, 129, 11213–11222.
- 50K. Tagami, C. Liu, A. Minami, M. Noike, T. Isaka, S. Fueki, Y. Shichijo, H. Toshima, K. Gomi, T. Dairi, H. Oikawa, J. Am. Chem. Soc. 2013, 135, 1260–1263.
- 51
- 51aH. Li, Q. Zhang, S. Li, Y. Zhu, G. Zhang, H. Zhang, X. Tian, S. Zhang, J. Ju, C. Zhang, J. Am. Chem. Soc. 2012, 134, 8996–9005;
- 51bZ. Xu, M. Baunach, L. Ding, C. Hertweck, Angew. Chem. Int. Ed. 2012, 51, 10293–10297; Angew. Chem. 2012, 124, 10439–10443;
- 51cH. Li, Y. Sun, Q. Zhang, Y. Zhu, S. M. Li, C. Zhang, Org. Lett. 2015, 17, 306–309;
- 51dS. Kugel, M. Baunach, P. Baer, M. Ishida-Ito, S. Sundaram, Z. Xu, M. Groll, C. Hertweck, Nat. Commun. 2017, 8, 15804.
- 52
- 52aM. C. Tang, Y. Zhou, K. Watanabe, C. T. Walsh, Y. Tang, Chem. Rev. 2017, 117, 5226–5333;
- 52bC. T. Walsh, Y. Tang, Biochemistry 2018, 57, 3087–3104.
- 53
- 53aA. Minami, M. Shimaya, G. Suzuki, A. Migita, S. Shinde, K. Sato, K. Watanabe, T. Tamura, H. Ogura, H. Oikawa, J. Am. Chem. Soc. 2012, 134, 7246–7249;
- 53bD. E. Cane, W. D. Celmer, J. W. Westley, J. Am. Chem. Soc. 1983, 105, 3594–3600;
- 53cT. Liu, D. E. Cane, Z. Deng, Methods Enzymol. 2009, 459, 187–214;
- 53dA. R. Gallimore, Nat. Prod. Rep. 2009, 26, 266–280.
- 54R. Kellmann, A. Stüken, R. J. Orr, H. M. Svendsen, K. S. Jakobsen, Mar. Drugs 2010, 8, 1011–1048.
- 55
- 55aM. Oliynyk, C. B. Stark, A. Bhatt, M. A. Jones, Z. A. Hughes-Thomas, C. Wilkinson, Z. Oliynyk, Y. Demydchuk, J. Staunton, P. F. Leadlay, Mol. Microbiol. 2003, 49, 1179–1190;
- 55bA. R. Gallimore, C. B. W. Stark, A. Bhatt, B. M. Harvey, Y. Demydchuk, V. Bolanos-Garcia, D. J. Fowler, J. F. Staunton, P. F. Leadlay, J. B. Spencer, Chem. Biol. 2006, 13, 453–460.
- 56X. M. Mao, Z. J. Zhan, M. N. Grayson, M. C. Tang, W. Xu, Y. Q. Li, W. B. Yin, H. C. Lin, Y. H. Chooi, K. N. Houk, Y. Tang, J. Am. Chem. Soc. 2015, 137, 11904–11907.
- 57B. S. Jeon, S. A. Wang, M. Ruszczcky, H. W. Liu, Chem. Rev. 2017, 117, 5367–5388.
- 58A. Minami, H. Oikawa, J. Antibiot. 2016, 69, 500–506.
- 59Z. Tian, P. Sun, Y. Zan, Z. Wu, Q. Zheng, S. Zhou, H. Zhang, F. Yu, X. Jia, D. Chen, A. Mandi, T. Kurtan, W. Liu, Nat. Chem. Biol. 2015, 11, 259–265.
- 60B. S. Jeon, M. W. Ruszczcky, W. K. Russell, G. M. Lin, N. Kim, S. H. Choi, S. A. Wang, Y. N. Liu, D. H. Russell, K. N. Houk, H. W. Liu, Proc. Natl. Acad. Sci. USA 2017, 114, 10408–10413.
- 61O. Diels, K. Alder, Liebigs Ann. Chem. 1928, 460, 98–122.
- 62T. L. Gresham, T. R. Steadman, J. Am. Chem. Soc. 1949, 71, 737–738.
- 63S. Desrat, P. van de Wege, J. Org. Chem. 2009, 74, 6728–6734.
- 64W. J. Wever, J. W. Bogart, J. A. Baccile, A. N. Chan, F. C. Schroeder, A. A. Bowers, J. Am. Chem. Soc. 2015, 137, 3494–3497.
- 65C. T. Walsh, M. G. Acker, A. A. Bowers, J. Biol. Chem. 2010, 285, 27525–27531.
- 66D. P. Cogan, G. A. Hudson, Z. Zhang, T. V. Pogorelov, W. A. van der Donk, D. A. Mitchell, S. K. Nair, Proc. Natl. Acad. Sci. USA 2017, 114, 12928–12933.
- 67M. Ohashi, F. Liu, Y. Hai, M. Chen, M. C. Tang, Z. Yang, M. Sato, K. Watanabe, K. N. Houk, Y. Tang, Nature 2017, 549, 502–506.
- 68A. Y. Lee, J. D. Stewart, J. Clardy, B. Ganem, Chem. Biol. 1995, 2, 195–203.
- 69L. Y. P. Luk, Q. Qian, M. E. Tanner, J. Am. Chem. Soc. 2011, 133, 12342–12345.
- 70W. Boland, Proc. Natl. Acad. Sci. USA 1995, 92, 37–43.
- 71
- 71aS. Li, A. N. Lowell, F. Yu, A. Taveh, S. A. Newmister, N. Baiir, J. M. Schaub, R. M. Williams, D. H. Sherman, J. Am. Chem. Soc. 2015, 137, 15366–15369;
- 71bS. Li, A. N. Lowell, S. A. Newmister, F. Yu, R. M. Williams, D. H. Sherman, Nat. Chem. Biol. 2017, 13, 467–469;
- 71cQ. Zhu, X. Liu, Chem. Commun. 2017, 53, 2826–2829;
- 71dQ. Zhu, X. Liu, Angew. Chem. Int. Ed. 2017, 56, 9062–9066; Angew. Chem. 2017, 129, 9190–9194.
- 72R. E. Moore, C. Cheuk, X. Qiang, G. M. L. Patterson, R. Bonjouklian, T. A. Smitka, J. S. Mynderse, R. F. Foster, N. D. Jones, J. K. Swartzendruber, J. B. Deeter, J. Org. Chem. 1987, 52, 1036–1043.
- 73S. A. Newmister, S. Li, M. Garcia-Borras, J. N. Sanders, S. Yang, A. N. Lowell, F. Yu, J. L. Smith, R. M. Williams, K. N. Houk, D. H. Sherman, Nat. Chem. Biol. 2018, 14, 345–351.
- 74
- 74aC. Krebs, D. Galonić Fujimori, C. T. Walsh, J. M. J. Bollinger, Acc. Chem. Res. 2007, 40, 484–492;
- 74bH. Nakamura, Y. Matsuda, I. Abe, Nat. Prod. Rep. 2018, 35, 633–645.
- 75B. J. Landgraf, E. L. McCarthy, S. J. Booker, Annu. Rev. Biochem. 2016, 85, 485–514.
- 76
- 76aQ. Zhang, W. A. van der Donk, W. Liu, Acc. Chem. Res. 2012, 45, 555–564;
- 76bK. Yokoyama, E. A. Lilla, Nat. Prod. Rep. 2018, 35, 660–694.
- 77M. W. Ruszczycky, A. Zhong, H. W. Liu, Nat. Prod. Rep. 2018, 35, 615–621.
- 78C. J. Schofield, Z. Zhang, Curr. Opin. Struct. Biol. 1999, 9, 722–731.
- 79M. Mizutani, F. Sato, Arch. Biochem. Biophys. 2011, 507, 194–203.
- 80R. B. Hamed, J. R. Gomez-Castellanos, H. L. Ducho, M. A. McDonough, C. J. Schofield, Nat. Prod. Rep. 2013, 30, 21–107.
- 81
- 81aP. L. Roach, I. J. Clifton, C. M. Hensgens, N. Shibata, C. J. Schofield, J. Hajdu, J. E. Baldwin, Nature 1997, 387, 827–830;
- 81bK. Valegård, A. C. van Scheltinga, M. D. Lloyd, T. Hara, S. Ramaswamy, A. Perrakis, A. Thompson, H. J. Lee, J. E. Baldwin, C. J. Schofield, J. Hajdu, I. Andersson, Nature 1998, 394, 805–809.
- 82
- 82aO. Pylypenko, F. Vitali, K. Zerbe, J. A. Robinson, I. Schlichting, J. Biol. Chem. 2003, 278, 46727–46733;
- 82bK. Zerbe, K. Woithe, D. B. Li, F. Vitali, L. Bigler, J. A. Robinson, Angew. Chem. Int. Ed. 2004, 43, 6709–6713; Angew. Chem. 2004, 116, 6877–6881;
- 82cK. Woithe, N. Geib, K. Zerbe, D. B. Li, M. Heck, S. Fournier-Rousset, O. Meyer, F. Vitali, N. Matoba, K. Abou-Hadeed, J. A. Robinson, J. Am. Chem. Soc. 2007, 129, 6887–6895;
- 82dK. Haslinger, M. Peschke, C. Brieke, E. Maximowitsch, M. J. Cryle, Nature 2015, 521, 105–109;
- 82eC. C. Forneris, M. R. Seyedsayamdost, Angew. Chem. Int. Ed. 2018, 57, 8048–8052; Angew. Chem. 2018, 130, 8180–8184.
- 83J. M. Grandner, R. A. Cacho, Y. Tang, K. N. Houk, ACS Catal. 2016, 6, 4506–4511.
- 84
- 84aA. Gesell, M. Rolf, J. Ziegler, M. L. Díaz Chávez, F. C. Huang, T. M. Kutchan, J. Biol. Chem. 2009, 284, 24432–24442;
- 84bS. Galanie, K. Thodey, I. J. Trenchard, M. Filsinger Interrante, C. D. Smolke, Science 2015, 349, 1095–1100.
- 85
- 85aA. R. Howard-Jones, C. T. Walsh, J. Am. Chem. Soc. 2007, 129, 11016–11017;
- 85bM. Makino, H. Sugimoto, Y. Shiro, S. Asamizu, H. Onaka, S. Nagano, Proc. Natl. Acad. Sci. USA 2007, 104, 11591–11596.
- 86N. Kato, H. Suzuki, H. Takagi, Y. Asami, H. Kakeya, M. Uramoto, T. Usui, S. Takahashi, Y. Sugimoto, H. Osada, ChemBioChem 2009, 10, 920–928.
- 87H. C. Lin, T. McMahon, A. Patl, M. Corsello, A. Simon, W. Xu, M. Zhao, K. N. Houk, N. K. Garg, Y. Tang, J. Am. Chem. Soc. 2016, 138, 4002–4005.
- 88H. C. Lin, G. Chiou, Y. H. Chooi, T. C. McMahon, W. Xu, N. K. Garg, Y. Tang, Angew. Chem. Int. Ed. 2015, 54, 3004–3007; Angew. Chem. 2015, 127, 3047–3050.
- 89S. P. Lathrop, M. Pompeo, W. T. Chang, M. Movassaghi, J. Am. Chem. Soc. 2016, 138, 7763–7769.
- 90C. A. Helliwell, P. M. Chandler, A. Poole, E. S. Dennis, W. J. Peacock, Proc. Natl. Acad. Sci. USA 2001, 98, 2065–2070.
- 91
- 91aY. Matsuda, T. Wakimoto, T. Mori, T. Awakawa, I. Abe, J. Am. Chem. Soc. 2014, 136, 15326–15336;
- 91bY. Nakashima, T. Mitsihashi, Y. Matsuda, M. Senda, H. Sato, M. Yamazaki, M. Uchiyama, T. Senda, I. Abe, J. Am. Chem. Soc. 2018, 140, 9743–9750.
- 92
- 92aS. Salazar-Cerezo, N. Martínez-Montiel, J. García-Sánchez, R. Pérez-Y-Terrón, R. D. Martínez-Contreras, Microbiol. Res. 2018, 208, 85–98;
- 92bB. Tudzynski, Appl. Microbiol. Biotechnol. 2005, 66, 597–611;
- 92cR. S. Nett, M. Montanares, A. Marcassa, X. Lu, R. Nagel, T. C. Charles, P. Hedden, M. C. Rojas, R. J. Peters, Nat. Chem. Biol. 2017, 13, 69–74.
- 93C. Y. Lai, I. W. Lo, R. T. Hewage, Y. C. Chen, C. T. Chen, C. F. Lee, S. Lin, M. C. Tang, H. C. Lin, Angew. Chem. Int. Ed. 2017, 56, 9478–9482; Angew. Chem. 2017, 129, 9606–9610.
- 94
- 94aL. B. Davin, H. B. Wang, A. L. Crowell, D. L. Bedgar, D. M. Martin, S. Sarkanen, N. G. Lewis, Science 1997, 275, 362–366;
- 94bB. Pickel, A. Schaller, Appl. Microbiol. Biotechnol. 2013, 97, 8427–8438.
- 95R. B. Teponno, S. Kusari, M. Spiteller, Nat. Prod. Rep. 2016, 33, 1044–1092.
- 96W. Jung, O. Yu, S. M. Lau, D. P. O'Keefe, J. Odell, G. Fader, B. McGonigle, Nat. Biotechnol. 2000, 18, 208–212.
- 97J. Broderick, B. R. Duffus, K. D. Duschene, E. M. Shepard, Chem. Rev. 2014, 114, 4229–4317.
- 98B. W. Lepore, F. J. Ruzicka, P. A. Frey, D. Ringe, Proc. Natl. Acad. Sci. USA 2005, 102, 13819–13824.
- 99C. J. Fugate, J. T. Jarrett, Biochim. Biophys. Acta Proteins Proteomics 2012, 1824, 1213–1222.
- 100M. I. McLaughlin, N. D. Lanz, P. J. Goldman, K. H. Lee, S. J. Booker, C. L. Drennan, Proc. Natl. Acad. Sci. USA 2016, 113, 9446–9450.
- 101T. Hiratsuka, K. Furihata, J. Ishikawa, H. Yamashita, N. Itoh, H. Seto, T. Dairi, Science 2008, 321, 1670–1673.
- 102
- 102aN. Mahanta, D. Fedoseyenko, D. Dairi, T. P. Begley, J. Am. Chem. Soc. 2013, 135, 15318–15321;
- 102bS. Joshi, N. Mahanta, D. Fedoseyenko, H. Williams, T. P. Begley, J. Am. Chem. Soc. 2017, 139, 10952–10955.
- 103L. E. Cooper, D. Fedoseyenko, S. H. Abdelwahed, S. H. Kim, T. Dairi, T. P. Begley, Biochemistry 2013, 52, 4592–4594.
- 104A. P. Mehta, S. H. Abdelwahed, N. Mahanta, D. Fedoseyenko, B. Philmus, L. E. Cooper, Y. Liu, I. Jhulki, S. E. Ealick, T. P. Begley, J. Biol. Chem. 2015, 290, 3980–3986.
- 105
- 105aD. W. Muldera, E. S. Boyd, R. Sarma, R. K. Lange, J. A. Endrizzi, J. B. Broderick, J. W. Peters, Nature 2010, 465, 248–251;
- 105bA. S. Byer, E. M. Shepard, J. W. Peters, J. B. Broderick, J. Biol. Chem. 2015, 290, 3987–3994;
- 105cD. L. Suess, J. M. Kuchenreuther, L. De La Paz, J. R. Swartz, R. D. Britt, Inorg. Chem. 2016, 55, 478–487.
- 106
- 106aA. B. Smith, S. A. Kozmin, C. M. Adams, D. V. Paone, J. Am. Chem. Soc. 2000, 122, 4984–4985;
- 106bA. B. Smith, C. M. Adams, S. A. Kozmin, D. V. Paone, J. Am. Chem. Soc. 2001, 123, 5357–5359.
- 107B. S. Moore, J. L. Chen, G. M. L. Patterson, R. E. Moore, Tetrahedron 1992, 48, 3001–3006.
- 108
- 108aH. Nakamura, H. A. Hamer, G. Sirasani, E. P. Balskus, J. Am. Chem. Soc. 2012, 134, 18518–18521;
- 108bH. Nakamura, E. E. Schultz, E. P. Balskus, Nat. Chem. Biol. 2017, 13, 916–921.