Phenolic Building Blocks for the Assembly of Functional Materials
Dr. Md. Arifur Rahim
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Samantha L. Kristufek
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Shuaijun Pan
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Joseph J. Richardson
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Frank Caruso
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Md. Arifur Rahim
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Samantha L. Kristufek
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Shuaijun Pan
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Joseph J. Richardson
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Frank Caruso
ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorGraphical Abstract
Phenolics on the rise: Recent advances in the preparation of functional materials, namely thin films, particles, and bulk materials, based on phenolic building blocks and their diverse applications, ranging from biomedicine to catalysis, are highlighted. This Review will help integrate various disciplines that use phenols and serve as a guide for the development of future materials.
Abstract
Phenolic materials have long been known for their use in inks, wood coatings, and leather tanning. However, there has recently been a renewed interest in engineering advanced materials from phenolic building blocks. The intrinsic properties of phenolic compounds, such as metal chelation, hydrogen bonding, pH responsiveness, redox potentials, radical scavenging, polymerization, and light absorbance, have made them a distinct class of structural motifs for the synthesis of functional materials. Materials prepared from phenolic compounds often retain many of these useful properties with synergistic effects in applications ranging from catalysis to biomedicine. This Review provides an overview of the diverse functional materials that can be prepared from natural and synthetic phenolic building blocks, as well as their applications.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. Quideau, D. Deffieux, C. Douat-Casassus, L. Pouységu, Angew. Chem. Int. Ed. 2011, 50, 586; Angew. Chem. 2011, 123, 610.
- 2J. Yang, S. M. A. Cohen, M. Kamperman, Chem. Soc. Rev. 2014, 43, 8271.
- 3A. Soto-Vaca, A. Gutierrez, J. N. Losso, Z. Xu, J. W. Finley, J. Agric. Food Chem. 2012, 60, 6658.
- 4G. M. Robinson, R. Robinson, Biochem. J. 1932, 26, 1647.
- 5N. R. Perron, J. L. Brumaghim, Cell Biochem. Biophys. 2009, 53, 75.
- 6F. J. Francis, P. C. Markakis, Crit. Rev. Food Sci. Nutr. 1989, 28, 273.
- 7A. E. Stapleton, Plant Cell 1992, 4, 1353.
- 8P. W. Barnes, M. A. Tobler, K. Keefover-Ring, S. D. Flint, A. E. Barkley, R. J. Ryel, R. L. Lindroth, Plant Cell Environ. 2016, 39, 222.
- 9V. Cheynier, G. Comte, K. M. Davies, V. Lattanzio, S. Martens, Plant Physiol. Biochem. 2013, 72, 1.
- 10P. Bandyopadhyay, A. K. Ghosh, C. Ghosh, Food Funct. 2012, 3, 592.
- 11R. J. Stewart, J. C. Weaver, D. E. Morse, J. H. Waite, J. Exp. Biol. 2004, 207, 4727.
- 12J. H. Waite, N. H. Andersen, S. Jewhurst, C. Sun, J. Adhes. 2005, 81, 297.
- 13A. H. Hofman, I. A. van Hees, J. Yang, M. Kamperman, Adv. Mater. 2018, 30, 1704640.
- 14P. K. Forooshani, B. P. Lee, J. Polym. Sci. Part A 2016, 55, 9.
- 15J. H. Waite, M. L. Tanzer, Science 1981, 212, 1038.
- 16H. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. van Koeverden, G. K. Such, J. Cui, F. Caruso, Science 2013, 341, 154.
- 17G. P. Maier, M. V. Rapp, J. H. Waite, J. N. Israelachvili, A. Butler, Science 2015, 349, 628.
- 18H. Lee, B. P. Lee, P. B. Messersmith, Nature 2007, 448, 338.
- 19N. Holten-Andersen, M. J. Harrington, H. Birkedal, B. P. Lee, P. B. Messersmith, K. Y. C. Lee, J. H. Waite, Proc. Natl. Acad. Sci. USA 2011, 108, 2651.
- 20E. Filippidi, T. R. Cristiani, C. D. Eisenbach, J. H. Waite, J. N. Israelachvili, B. K. Ahn, M. T. Valentine, Science 2017, 358, 502.
- 21Y. Zhao, Y. Wu, L. Wang, M. Zhang, X. Chen, M. Liu, J. Fan, J. Liu, F. Zhou, Z. Wang, Nat. Commun. 2017, 8, 2218.
- 22H. Ejima, J. J. Richardson, F. Caruso, Nano Today 2017, 12, 136.
- 23S. L. Kristufek, K. T. Wacker, Y. Y. Timothy Tsao, L. Su, K. L. Wooley, Nat. Prod. Rep. 2017, 34, 433.
- 24A. L. Holmberg, K. H. Reno, R. P. Wool, T. H. Epps III, Soft Matter 2014, 10, 7405.
- 25K. J. Yao, C. B. Tang, Macromolecules 2013, 46, 1689.
- 26A. Gandini, T. M. Lacerda, Prog. Polym. Sci. 2015, 48, 1.
- 27B. K. Tiwari, N. P. Brunton, C. Brennan, Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction, Wiley, Hoboken, 2013.
10.1002/9781118464717 Google Scholar
- 28G. R. Beecher, J. Nutr. 2003, 133, 3248S.
- 29H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426.
- 30B. P. Lee, J. L. Dalsin, P. B. Messersmith, Biomacromolecules 2002, 3, 1038.
- 31Q. Zhang, G. Nurumbetov, A. Simula, C. Zhu, M. Li, P. Wilson, K. Kempe, B. Yang, L. Tao, D. M. Haddleton, Polym. Chem. 2016, 7, 7002.
- 32X. Xiong, L. Xue, J. Cui, ACS Macro Lett. 2018, 7, 239.
- 33X. Fan, L. Lin, J. L. Dalsin, P. B. Messersmith, J. Am. Chem. Soc. 2005, 127, 15843.
- 34L. Q. Xu, H. Jiang, K.-G. Neoh, E.-T. Kang, G. D. Fu, Polym. Chem. 2012, 3, 920.
- 35F. Zhang, S. Liu, Y. Zhang, Z. Chi, J. Xu, Y. Wei, J. Mater. Chem. 2012, 22, 17159.
- 36J. Su, F. Chen, V. L. Cryns, P. B. Messersmith, J. Am. Chem. Soc. 2011, 133, 11850.
- 37H. Lee, K. D. Lee, K. B. Pyo, S. Y. Park, H. Lee, Langmuir 2010, 26, 3790.
- 38Y. Min, P. T. Hammond, Chem. Mater. 2011, 23, 5349.
- 39Y. Lee, S. H. Lee, J. S. Kim, A. Maruyama, X. Chen, T. G. Park, J. Controlled Release 2011, 155, 3.
- 40J. H. Ryu, Y. Lee, W. H. Kong, T. G. Kim, T. G. Park, H. Lee, Biomacromolecules 2011, 12, 2653.
- 41H. Lee, Y. Lee, A. R. Statz, J. Rho, T. G. Park, P. B. Messersmith, Adv. Mater. 2008, 20, 1619.
- 42J. H. Cho, J. S. Lee, J. Shin, E. J. Jeon, S. An, Y. S. Choi, S. W. Cho, Adv. Funct. Mater. 2018, 28, 1705244.
- 43T. H. Anderson, J. Yu, A. Estrada, M. U. Hammer, J. H. Waite, J. N. Israelachvili, Adv. Funct. Mater. 2010, 20, 4196.
- 44L. Zhang, V. Lipik, A. Miserez, J. Mater. Chem. B 2016, 4, 1544.
- 45H. O. Ham, Z. Liu, K. H. Lau, H. Lee, P. B. Messersmith, Angew. Chem. Int. Ed. 2011, 50, 732; Angew. Chem. 2011, 123, 758.
- 46P. Glass, H. Chung, N. R. Washburn, M. Sitti, Langmuir 2009, 25, 6607.
- 47B. Xu, X. Sun, C. Wu, J. Hu, X. Huang, Polym. Chem. 2017, 8, 7499.
- 48M. Wen, M. Liu, W. Xue, K. Yang, G. Chen, W. Zhang, ACS Macro Lett. 2018, 7, 70.
- 49N. Patil, C. Falentin-Daudré, C. Jérôme, C. Detrembleur, Polym. Chem. 2015, 6, 2919.
- 50S. Lamping, T. Otremba, B. J. Ravoo, Angew. Chem. Int. Ed. 2018, 57, 2474; Angew. Chem. 2018, 130, 2499.
- 51C. R. Matos-Pérez, J. D. White, J. J. Wilker, J. Am. Chem. Soc. 2012, 134, 9498.
- 52M. A. North, C. A. Del Grosso, J. J. Wilker, ACS Appl. Mater. Interfaces 2017, 9, 7866.
- 53A. Isakova, P. D. Topham, A. J. Sutherland, Macromolecules 2014, 47, 2561.
- 54K. Zhan, H. Ejima, N. Yoshie, ACS Sustainable Chem. Eng. 2016, 4, 3857.
- 55S. Seo, S. Das, P. J. Zalicki, R. Mirshafian, C. D. Eisenbach, J. N. Israelachvili, J. H. Waite, B. K. Ahn, J. Am. Chem. Soc. 2015, 137, 9214.
- 56Q. Zhao, D. W. Lee, B. K. Ahn, S. Seo, Y. Kaufman, J. N. Israelachvili, J. H. Waite, Nat. Mater. 2016, 15, 407.
- 57R. Hlushko, H. Hlushko, S. A. Sukhishvili, Polym. Chem. 2018, 9, 506.
- 58Y. Mu, X. Wu, D. Pei, Z. Wu, C. Zhang, D. Zhou, X. Wan, ACS Biomater. Sci. Eng. 2017, 3, 3133.
- 59N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganas, C. Jerome, C. Detrembleur, Adv. Mater. 2017, 29, 1703373.
- 60K. Zhan, C. Kim, K. Sung, H. Ejima, N. Yoshie, Biomacromolecules 2017, 18, 2959.
- 61T. Shutava, M. Prouty, D. Kommireddy, Y. Lvov, Macromolecules 2005, 38, 2850.
- 62J. J. Richardson, J. Cui, M. Björnmalm, J. A. Braunger, H. Ejima, F. Caruso, Chem. Rev. 2016, 116, 14828.
- 63M. A. Rahim, H. Ejima, K. L. Cho, K. Kempe, M. Müllner, J. P. Best, F. Caruso, Chem. Mater. 2014, 26, 1645.
- 64H. Ejima, J. J. Richardson, F. Caruso, Polym. J. 2014, 46, 452.
- 65B. L. Tardy, J. J. Richardson, J. Guo, J. Lehtonen, M. Ago, O. J. Rojas, Green Chem. 2018, 20, 1335.
- 66G. Xiao, W. Chen, F. Tian, J. J. Richardson, B. L. Tardy, M. Liu, N. Joshi, J. Guo, Chem. Asian J. 2018, 13, 972.
- 67J. H. Park, K. Kim, J. Lee, J. Y. Choi, D. Hong, S. H. Yang, F. Caruso, Y. Lee, I. S. Choi, Angew. Chem. Int. Ed. 2014, 53, 12420; Angew. Chem. 2014, 126, 12628.
- 68S. H. Yang, D. Hong, J. Lee, E. H. Ko, I. S. Choi, Small 2013, 9, 178.
- 69T. Park, J. Y. Kim, H. Cho, H. C. Moon, B. J. Kim, J. H. Park, D. Hong, J. Park, I. S. Choi, Polymers 2017, 9, 140.
- 70J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. von Elverfeldt, C. E. Hagemeyer, F. Caruso, Angew. Chem. Int. Ed. 2014, 53, 5546; Angew. Chem. 2014, 126, 5652.
- 71Y. Ping, J. Guo, H. Ejima, X. Chen, J. J. Richardson, H. Sun, F. Caruso, Small 2015, 11, 2032.
- 72J. Guo, H. Sun, K. Alt, B. L. Tardy, J. J. Richardson, T. Suma, H. Ejima, J. Cui, C. E. Hagemeyer, F. Caruso, Adv. Healthcare Mater. 2015, 4, 1796.
- 73N. Bertleff-Zieschang, M. A. Rahim, Y. Ju, J. A. Braunger, T. Suma, Y. Dai, S. Pan, F. Cavalieri, F. Caruso, Chem. Commun. 2017, 53, 1068.
- 74M. A. Rahim, M. Björnmalm, N. Bertleff-Zieschang, Y. Ju, S. Mettu, M. G. Leeming, F. Caruso, ACS Appl. Mater. Interfaces 2018, 10, 7632.
- 75M. A. Rahim, K. Kempe, M. Müllner, H. Ejima, Y. Ju, M. P. van Koeverden, T. Suma, J. A. Braunger, M. G. Leeming, B. F. Abrahams, Chem. Mater. 2015, 27, 5825.
- 76Y. Ju, J. Cui, M. Müllner, T. Suma, M. Hu, F. Caruso, Biomacromolecules 2015, 16, 807.
- 77Y. Ju, J. Cui, H. Sun, M. Müllner, Y. Dai, J. Guo, N. Bertleff-Zieschang, T. Suma, J. J. Richardson, F. Caruso, Biomacromolecules 2016, 17, 2268.
- 78X. Yang, B. Yang, L. He, R. Li, Y. Liao, S. Zhang, Y. Yang, X. Xu, D. Zhang, H. Tan, J. Li, J. Li, ACS Biomater. Sci. Eng. 2017, 3, 3553.
- 79J. Park, S. Choi, H. Moon, H. Seo, J. Kim, S.-P. Hong, B. Lee, E. Kang, J. Lee, D. Ryu, I. S. Choi, Sci. Rep. 2017, 7, 6980.
- 80B. J. Kim, S. Han, K. B. Lee, I. S. Choi, Adv. Mater. 2017, 29, 1700784.
- 81M. A. Rahim, M. Bjornmalm, N. Bertleff-Zieschang, Q. Besford, S. Mettu, T. Suma, M. Faria, F. Caruso, Adv. Mater. 2017, 29, 1606717.
- 82P. V. Cherepanov, M. A. Rahim, N. Bertleff-Zieschang, M. A. Sayeed, A. P. O'Mullane, S. E. Moulton, F. Caruso, ACS Appl. Mater. Interfaces 2018, 10, 5828.
- 83C. Maerten, L. Lopez, P. Lupattelli, G. Rydzek, S. Pronkin, P. Schaaf, L. Jierry, F. Boulmedais, Chem. Mater. 2017, 29, 9668.
- 84J. Guo, J. J. Richardson, Q. A. Besford, A. J. Christofferson, Y. Dai, C. W. Ong, B. L. Tardy, K. Liang, G. H. Choi, J. Cui, Langmuir 2017, 33, 10616.
- 85J. J. Richardson, M. Björnmalm, F. Caruso, Science 2015, 348, aaa 2491.
- 86T. G. Shutava, Y. M. Lvov, J. Nanosci. Nanotechnol. 2006, 6, 1655.
- 87V. Kozlovskaya, E. Kharlampieva, I. Drachuk, D. Cheng, V. V. Tsukruk, Soft Matter 2010, 6, 3596.
- 88J. Sun, C. Su, X. Zhang, J. Li, W. B. Zhang, N. Zhao, J. Xu, S. Yang, J. Colloid Interface Sci. 2018, 513, 470.
- 89Y. Takemoto, H. Ajiro, M. Akashi, Langmuir 2015, 31, 6863.
- 90E. Adatoz, S. Hendessi, C. W. Ow-Yang, A. L. Demirel, Soft Matter 2018, 14, 3849.
- 91B.-S. Kim, H.-i. Lee, Y. Min, Z. Poon, P. T. Hammond, Chem. Commun. 2009, 4194.
- 92M. V. Lomova, A. I. Brichkina, M. V. Kiryukhin, E. N. Vasina, A. M. Pavlov, D. A. Gorin, G. B. Sukhorukov, M. N. Antipina, ACS Appl. Mater. Interfaces 2015, 7, 11732.
- 93M. Allais, F. Meyer, V. Ball, J. Colloid Interface Sci. 2018, 512, 722.
- 94V. Ball, Colloids Interface Sci. Commun. 2014, 3, 1.
- 95T. G. Shutava, M. D. Prouty, V. E. Agabekov, Y. M. Lvov, Chem. Lett. 2006, 35, 1144.
- 96S. Kim, D. S. Kim, S. M. Kang, Chem. Asian J. 2014, 9, 63.
- 97L. Yang, L. Han, J. Ren, H. Wei, L. Jia, Colloids Surf. A 2015, 484, 197.
- 98B. P. Lee, P. B. Messersmith, J. N. Israelachvili, J. H. Waite, Annu. Rev. Mater. Res. 2011, 41, 99.
- 99J. H. Waite, Nat. Mater. 2008, 7, 8.
- 100M. Liu, G. Zeng, K. Wang, Q. Wan, L. Tao, X. Zhang, Y. Wei, Nanoscale 2016, 8, 16819.
- 101R. Mrówczyński, ACS Appl. Mater. Interfaces 2018, 10, 7541.
- 102A. Postma, Y. Yan, Y. Wang, A. N. Zelikin, E. Tjipto, F. Caruso, Chem. Mater. 2009, 21, 3042.
- 103X. Chen, Y. Yan, M. Mullner, M. P. van Koeverden, K. F. Noi, W. Zhu, F. Caruso, Langmuir 2014, 30, 2921.
- 104M. d'Ischia, A. Napolitano, V. Ball, C.-T. Chen, M. J. Buehler, Acc. Chem. Res. 2014, 47, 3541.
- 105C.-T. Chen, F. J. Martin-Martinez, G. S. Jung, M. J. Buehler, Chem. Sci. 2017, 8, 1631.
- 106S. Hong, S. Na Yun, S. Choi, T. Song In, Y. Kim Woo, H. Lee, Adv. Funct. Mater. 2012, 22, 4711.
- 107D. R. Dreyer, D. J. Miller, B. D. Freeman, D. R. Paul, C. W. Bielawski, Langmuir 2012, 28, 6428.
- 108J. Cui, Y. Yan, G. K. Such, K. Liang, C. J. Ochs, A. Postma, F. Caruso, Biomacromolecules 2012, 13, 2225.
- 109R. Liang, J. Ding, S. Gao, W. Qin, Angew. Chem. Int. Ed. 2017, 56, 6833; Angew. Chem. 2017, 129, 6937.
- 110Y. Song, G. Ye, Y. Lu, J. Chen, J. Wang, K. Matyjaszewski, ACS Macro Lett. 2016, 5, 382.
- 111Y. Yang, X. Liu, G. Ye, S. Zhu, Z. Wang, X. Huo, K. Matyjaszewski, Y. Lu, J. Chen, ACS Appl. Mater. Interfaces 2017, 9, 13637.
- 112Y. Song, G. Ye, F. Wu, Z. Wang, S. Liu, M. Kopeć, Z. Wang, J. Chen, J. Wang, K. Matyjaszewski, Chem. Mater. 2016, 28, 5013.
- 113Z. Zeng, M. Wen, G. Ye, X. Huo, F. Wu, Z. Wang, J. Yan, K. Matyjaszewski, Y. Lu, J. Chen, Chem. Mater. 2017, 29, 10212.
- 114S. P. Le-Masurier, G. Gody, S. Perrier, A. M. Granville, Polym. Chem. 2014, 5, 2816.
- 115M. Lee, U. Kim Jong, S. Lee Joon, I. Lee Byung, J. Shin, B. Park Chan, Adv. Mater. 2014, 26, 4463.
- 116J. Zhou, P. Wang, C. Wang, Y. T. Goh, Z. Fang, P. B. Messersmith, H. Duan, ACS Nano 2015, 9, 6951.
- 117M. Kohri, Y. Nannichi, T. Taniguchi, K. Kishikawa, J. Mater. Chem. C 2015, 3, 720.
- 118T.-F. Wu, J.-D. Hong, Biomacromolecules 2015, 16, 660.
- 119M. Xiao, Y. Li, M. C. Allen, D. D. Deheyn, X. Yue, J. Zhao, N. C. Gianneschi, M. D. Shawkey, A. Dhinojwala, ACS Nano 2015, 9, 5454.
- 120T. S. Sileika, D. G. Barrett, R. Zhang, K. H. Lau, P. B. Messersmith, Angew. Chem. Int. Ed. 2013, 52, 10766; Angew. Chem. 2013, 125, 10966.
- 121J. S. Lee, J. S. Lee, M. S. Lee, S. An, K. Yang, K. Lee, H. S. Yang, H. Lee, S.-W. Cho, Chem. Mater. 2017, 29, 4375.
- 122H. Watanabe, A. Fujimoto, J. Nishida, T. Ohishi, A. Takahara, Langmuir 2016, 32, 4619.
- 123F. Behboodi-Sadabad, H. Zhang, V. Trouillet, A. Welle, N. Plumeré, P. A. Levkin, Adv. Funct. Mater. 2017, 27, 1700127.
- 124F. Behboodi-Sadabad, H. Zhang, V. Trouillet, A. Welle, N. Plumere, P. A. Levkin, Chem. Mater. 2018, 30, 1937.
- 125Y. Li, W. Xiao, K. Xiao, L. Berti, J. Luo, H. P. Tseng, G. Fung, K. S. Lam, Angew. Chem. Int. Ed. 2012, 51, 2864; Angew. Chem. 2012, 124, 2918.
- 126C. Yuan, J. Chen, S. Yu, Y. Chang, J. Mao, Y. Xu, W. Luo, B. Zeng, L. Dai, Soft Matter 2015, 11, 2243.
- 127R. Slegeris, B. A. Ondrusek, H. Chung, Polym. Chem. 2017, 8, 4707.
- 128J. Guo, B. L. Tardy, A. J. Christofferson, Y. Dai, J. J. Richardson, W. Zhu, M. Hu, Y. Ju, J. Cui, R. R. Dagastine, I. Yarovsky, F. Caruso, Nat. Nanotechnol. 2016, 11, 1105.
- 129M. Björnmalm, J. Cui, N. Bertleff-Zieschang, D. Song, M. Faria, M. A. Rahim, F. Caruso, Chem. Mater. 2017, 29, 289.
- 130C. H. Wunderlich, R. Weber, G. Bergerhoff, Z. Anorg. Allg. Chem. 1991, 598, 371.
- 131L. Cooper, T. Hidalgo, M. Gorman, T. Lozano-Fernandez, R. Simon-Vazquez, C. Olivier, N. Guillou, C. Serre, C. Martineau, F. Taulelle, D. Damasceno-Borges, G. Maurin, A. Gonzalez-Fernandez, P. Horcajada, T. Devic, Chem. Commun. 2015, 51, 5848.
- 132R. K. Feller, A. K. Cheetham, Solid State Sci. 2006, 8, 1121.
- 133L. Cooper, N. Guillou, C. Martineau, E. Elkaim, F. Taulelle, C. Serre, T. Devic, Eur. J. Inorg. Chem. 2014, 6281.
- 134G. Mouchaham, L. Cooper, N. Guillou, C. Martineau, E. Elkaïm, S. Bourrelly, P. L. Llewellyn, C. Allain, G. Clavier, C. Serre, T. Devic, Angew. Chem. Int. Ed. 2015, 54, 13297; Angew. Chem. 2015, 127, 13495.
- 135M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O. M. Yaghi, Chem. Mater. 2012, 24, 3511.
- 136N. T. T. Nguyen, H. Furukawa, F. Gándara, C. A. Trickett, H. M. Jeong, K. E. Cordova, O. M. Yaghi, J. Am. Chem. Soc. 2015, 137, 15394.
- 137S. J. Yang, M. Antonietti, N. Fechler, J. Am. Chem. Soc. 2015, 137, 8269.
- 138W. Zhu, G. Xiang, J. Shang, J. Guo, B. Motevalli, P. Durfee, J. O. Agola, E. N. Coker, C. J. Brinker, Adv. Funct. Mater. 2018, 28, 1705274.
- 139X. Wang, J. Yan, D. Pan, R. Yang, L. Wang, Y. Xu, J. Sheng, Y. Yue, Q. Huang, Y. Wang, R. Wang, M. Yang, Adv. Healthcare Mater. 2018, 1701505. https://doi.org/10.1002/adhm.201701505.
- 140Y. Dai, J. Guo, T. Y. Wang, Y. Ju, A. J. Mitchell, T. Bonnard, J. Cui, J. J. Richardson, C. E. Hagemeyer, K. Alt, F. Caruso, Adv. Healthcare Mater. 2017, 6, 1700467.
- 141Z. Wang, Y. Xie, Y. Li, Y. Huang, L. R. Parent, T. Ditri, N. Zang, J. D. Rinehart, N. C. Gianneschi, Chem. Mater. 2017, 29, 8195.
- 142S. Wu, R. Qi, H. Kuang, Y. Wei, X. Jing, F. Meng, Y. Huang, ChemPlusChem 2013, 78, 175.
- 143J. Ren, Y. Zhang, J. Zhang, H. Gao, G. Liu, R. Ma, Y. An, D. Kong, L. Shi, Biomacromolecules 2013, 14, 3434.
- 144T. Cheng, J. Liu, J. Ren, F. Huang, H. Ou, Y. Ding, Y. Zhang, R. Ma, Y. An, J. Liu, L. Shi, Theranostics 2016, 6, 1277.
- 145G. H. Hwang, K. H. Min, H. J. Lee, H. Y. Nam, G. H. Choi, B. J. Kim, S. Y. Jeong, S. C. Lee, Chem. Commun. 2014, 50, 4351.
- 146K. Xin, M. Li, D. Lu, X. Meng, J. Deng, D. Kong, D. Ding, Z. Wang, Y. Zhao, ACS Appl. Mater. Interfaces 2017, 9, 80.
- 147J. M. W. Chan, J. P. K. Tan, A. C. Engler, X. Ke, S. Gao, C. Yang, H. Sardon, Y. Y. Yang, J. L. Hedrick, Macromolecules 2016, 49, 2013.
- 148R. J. Ono, A. L. Z. Lee, Z. X. Voo, S. Venkataraman, B. W. Koh, Y. Y. Yang, J. L. Hedrick, Biomacromolecules 2017, 18, 2277.
- 149L. Sun, C. Wang, L. Wang, ACS Nano 2018, 12, 4002.
- 150R. Auvergne, S. Caillol, G. David, B. Boutevin, J. P. Pascault, Chem. Rev. 2014, 114, 1082.
- 151K. T. Wacker, S. L. Kristufek, S.-M. Lim, S. Kahn, K. L. Wooley, RSC Adv. 2016, 6, 81672.
- 152P. Dastidar, S. Ganguly, K. Sarkar, Chem. Asian J. 2016, 11, 2484.
- 153A. R. Hirst, B. Escuder, J. F. Miravet, D. K. Smith, Angew. Chem. Int. Ed. 2008, 47, 8002; Angew. Chem. 2008, 120, 8122.
- 154D. Díaz Díaz, D. Kuhbeck, R. J. Koopmans, Chem. Soc. Rev. 2011, 40, 427.
- 155B. Adhikari, G. Palui, A. Banerjee, Soft Matter 2009, 5, 3452.
- 156C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, Z. Suo, Science 2013, 341, 984.
- 157D. Das, T. Kar, P. K. Das, Soft Matter 2012, 8, 2348.
- 158M. Shibayama, X. Li, T. Sakai, Ind. Eng. Chem. Res. 2018, 57, 1121.
- 159A. Y.-Y. Tam, V. W.-W. Yam, Chem. Soc. Rev. 2013, 42, 1540.
- 160N. M. Sangeetha, U. Maitra, Chem. Soc. Rev. 2005, 34, 821.
- 161Q. Chen, W. Huang, P. Chen, C. Peng, H. B. Xie, Z. K. Zhao, M. Sohail, M. Bao, ChemCatChem 2015, 7, 1083.
- 162M. Martínez-Calvo, O. Kotova, M. E. Möbius, A. P. Bell, T. McCabe, J. J. Boland, T. Gunnlaugsson, J. Am. Chem. Soc. 2015, 137, 1983.
- 163H. B. Aiyappa, S. Saha, P. Wadge, R. Banerjee, S. Kurungot, Chem. Sci. 2015, 6, 603.
- 164J. H. Kim, J. Y. Oh, J. M. Lee, Y. C. Jeong, S. H. So, Y. S. Cho, S. Nam, C. R. Park, S. J. Yang, Carbon 2018, 126, 190.
- 165M. S. Menyo, C. J. Hawker, J. H. Waite, Soft Matter 2013, 9, 10314.
- 166N. Holten-Andersen, A. Jaishankar, M. J. Harrington, D. E. Fullenkamp, G. DiMarco, L. He, G. H. McKinley, P. B. Messersmith, K. Y. C. Lee, J. Mater. Chem. B 2014, 2, 2467.
- 167Y. Chan Choi, J. S. Choi, Y. J. Jung, Y. W. Cho, J. Mater. Chem. B 2014, 2, 201.
- 168A. Ghadban, A. S. Ahmed, Y. Ping, R. Ramos, N. Arfin, B. Cantaert, R. V. Ramanujan, A. Miserez, Chem. Commun. 2016, 52, 697.
- 169P. S. Yavvari, S. Pal, S. Kumar, A. Kar, A. K. Awasthi, A. Naaz, A. Srivastava, A. Bajaj, ACS Biomater. Sci. Eng. 2017, 3, 3404.
- 170H. Xu, J. Nishida, W. Ma, H. Wu, M. Kobayashi, H. Otsuka, A. Takahara, ACS Macro Lett. 2012, 1, 457.
- 171B. P. Lee, S. Konst, Adv. Mater. 2014, 26, 3415.
- 172Q. Li, D. G. Barrett, P. B. Messersmith, N. Holten-Andersen, ACS Nano 2016, 10, 1317.
- 173S. Hou, P. X. Ma, Chem. Mater. 2015, 27, 7627.
- 174M. Krogsgaard, A. Andersen, H. Birkedal, Chem. Commun. 2014, 50, 13278.
- 175H. Fan, L. Wang, X. Feng, Y. Bu, D. Wu, Z. Jin, Macromolecules 2017, 50, 666.
- 176Y.-N. Chen, L. Peng, T. Liu, Y. Wang, S. Shi, H. Wang, ACS Appl. Mater. Interfaces 2016, 8, 27199.
- 177M. Shin, J. H. Ryu, J. P. Park, K. Kim, J. W. Yang, H. Lee, Adv. Funct. Mater. 2015, 25, 1270.
- 178B. Hu, Y. Shen, J. Adamcik, P. Fischer, M. Schneider, M. J. Loessner, R. Mezzenga, ACS Nano 2018, 12, 3385.
- 179M. A. Rahim, M. Björnmalm, T. Suma, M. Faria, Y. Ju, K. Kempe, M. Müllner, H. Ejima, A. D. Stickland, F. Caruso, Angew. Chem. Int. Ed. 2016, 55, 13803; Angew. Chem. 2016, 128, 14007.
- 180D. Chen, K. Kannan, H. Tan, Z. Zheng, Y. L. Feng, Y. Wu, M. Widelka, Environ. Sci. Technol. 2016, 50, 5438.
- 181Q. Q. Ma, X. Q. Liu, R. Y. Zhang, J. Zhu, Y. H. Jiang, Green Chem. 2013, 15, 1300.
- 182C. Ding, A. S. Matharu, ACS Sustainable Chem. Eng. 2014, 2, 2217.
- 183E. Darroman, N. Durand, B. Boutevin, S. Caillol, Prog. Org. Coat. 2016, 91, 9.
- 184T. K. L. Nguyen, S. Livi, B. G. Soares, G. M. O. Barra, J.-F. Gérard, J. Duchet-Rumeau, ACS Sustainable Chem. Eng. 2017, 5, 8429.
- 185L. Puchot, P. Verge, S. Peralta, Y. Habibi, C. Vancaeyzeele, F. Vidal, Polym. Chem. 2018, 9, 472.
- 186G. Yang, B. J. Rohde, H. Tesefay, M. L. Robertson, ACS Sustainable Chem. Eng. 2016, 4, 6524.
- 187S. L. Kristufek, G. Yang, L. A. Link, B. J. Rohde, M. L. Robertson, K. L. Wooley, ChemSusChem 2016, 9, 2135.
- 188A. Noel, Y. P. Borguet, J. E. Raymond, K. L. Wooley, Macromolecules 2014, 47, 2974.
- 189S. F. Koelewijn, S. Van den Bosch, T. Renders, W. Schutyser, B. Lagrain, M. Smet, J. Thomas, W. Dehaen, P. Van Puyvelde, H. Witters, B. F. Sels, Green Chem. 2017, 19, 2561.
- 190J. Li, H. Ejima, N. Yoshie, ACS Appl. Mater. Interfaces 2016, 8, 19047.
- 191C. Kim, H. Ejima, N. Yoshie, RSC Adv. 2017, 7, 19288.
- 192X.-W. Peng, L.-X. Zhong, J.-L. Ren, R.-C. Sun, J. Agric. Food Chem. 2012, 60, 3909.
- 193J. Huang, J. Liao, T. Wang, W. Sun, Z. Tong, Soft Matter 2018, 14, 2500.
- 194S. Pan, A. K. Kota, J. M. Mabry, A. Tuteja, J. Am. Chem. Soc. 2013, 135, 578.
- 195D. Payra, M. Naito, Y. Fujii, Y. Nagao, Chem. Commun. 2016, 52, 312.
- 196S. C. Grindy, R. Learsch, D. Mozhdehi, J. Cheng, D. G. Barrett, Z. Guan, P. B. Messersmith, N. Holten-Andersen, Nat. Mater. 2015, 14, 1210.
- 197Y. Tokura, S. Harvey, C. Chen, Y. Wu, D. Y. W. Ng, T. Weil, Angew. Chem. Int. Ed. 2018, 57, 1587; Angew. Chem. 2018, 130, 1603.
- 198K. Tanaka, G. H. Clever, Y. Takezawa, Y. Yamada, C. Kaul, M. Shionoya, T. Carell, Nat. Nanotechnol. 2006, 1, 190.
- 199Z. Yi, Z. Sun, G. Chen, H. Zhang, X. Ma, W. Su, X. Cui, X. Li, J. Mater. Chem. B 2018, 6, 1373.
- 200M. Shin, H.-A. Lee, M. Lee, Y. Shin, J.-J. Song, S.-W. Kang, D.-H. Nam, E. J. Jeon, M. Cho, M. Do, S. Park, M. S. Lee, J.-H. Jang, S.-W. Cho, K.-S. Kim, H. Lee, Nat. Biomed. Eng. 2018, 2, 304.
- 201C. Zhong, T. Gurry, A. A. Cheng, J. Downey, Z. Deng, C. M. Stultz, T. K. Lu, Nat. Nanotechnol. 2014, 9, 858.
- 202M. Perrini, D. Barrett, N. Ochsenbein-Koelble, R. Zimmermann, P. Messersmith, M. Ehrbar, J. Mech. Behav. Biomed. Mater. 2016, 58, 57.
- 203V. Bhagat, M. L. Becker, Biomacromolecules 2017, 18, 3009.
- 204A. Miserez, T. Schneberk, C. Sun, F. W. Zok, J. H. Waite, Science 2008, 319, 1816.
- 205M. J. Harrington, A. Masic, N. Holten-Andersen, J. H. Waite, P. Fratzl, Science 2010, 328, 216.
- 206Y. Wang, J. P. Park, S. H. Hong, H. Lee, Adv. Mater. 2016, 28, 9961.
- 207W. Xu, P. A. Ledin, Z. Iatridi, C. Tsitsilianis, V. V. Tsukruk, Angew. Chem. Int. Ed. 2016, 55, 4908; Angew. Chem. 2016, 128, 4992.
- 208C. Park, B. J. Yang, K. B. Jeong, C. B. Kim, S. Lee, B. C. Ku, Angew. Chem. Int. Ed. 2017, 56, 5485; Angew. Chem. 2017, 129, 5577.
- 209S. J. Clarke, C. A. Hollmann, Z. Zhang, D. Suffern, S. E. Bradforth, N. M. Dimitrijevic, W. G. Minarik, J. L. Nadeau, Nat. Mater. 2006, 5, 409.
- 210D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, M. J. Naughton, Z. Ren, T. C. Chiles, Nat. Nanotechnol. 2010, 5, 597.
- 211F. Liu, X. He, H. Chen, J. Zhang, H. Zhang, Z. Wang, Nat. Commun. 2015, 6, 8003.
- 212J. Guo, X. Wang, D. C. Henstridge, J. J. Richardson, J. Cui, A. Sharma, M. A. Febbraio, K. Peter, J. B. de Haan, C. E. Hagemeyer, F. Caruso, Adv. Healthcare Mater. 2015, 4, 2170.
- 213L. Zhang, J. Wu, Y. Wang, Y. Long, N. Zhao, J. Xu, J. Am. Chem. Soc. 2012, 134, 9879.
- 214D. Hong, K. Bae, S. P. Hong, J. H. Park, I. S. Choi, W. K. Cho, Chem. Commun. 2014, 50, 11649.
- 215S. Kim, T. Gim, Y. Jeong, J. H. Ryu, S. M. Kang, ACS Appl. Mater. Interfaces 2018, 10, 7626.
- 216J. Cui, Y. Ju, K. Liang, H. Ejima, S. Lörcher, K. T. Gause, J. J. Richardson, F. Caruso, Soft Matter 2014, 10, 2656.
- 217Q. Zhu, Q. Pan, ACS Nano 2014, 8, 1402.
- 218H. J. Kim, D.-G. Kim, H. Yoon, Y.-S. Choi, J. Yoon, J.-C. Lee, Adv. Mater. Interfaces 2015, 2, 1500298.
- 219M. Lee, J. Rho, D. E. Lee, S. Hong, S. J. Choi, P. B. Messersmith, H. Lee, ChemPlusChem 2012, 77, 987.
- 220H. Guo, Z. Yao, Z. Yang, X. Ma, J. Wang, C. Y. Tang, Environ. Sci. Technol. 2017, 51, 12638.
- 221J. Kim, Q. Fu, J. M. Scofield, S. E. Kentish, G. G. Qiao, Nanoscale 2016, 8, 8312.
- 222J. Wei, Y. Liang, Y. Hu, B. Kong, J. Zhang, Q. Gu, Y. Tong, X. Wang, S. P. Jiang, H. Wang, Angew. Chem. Int. Ed. 2016, 55, 12470; Angew. Chem. 2016, 128, 12658.
- 223G. Yun, S. Pan, T. Y. Wang, J. Guo, J. J. Richardson, F. Caruso, Adv. Healthcare Mater. 2018, 7, 1700934.
- 224A. Alford, V. Kozlovskaya, B. Xue, N. Gupta, W. Higgins, D. Pham-Hua, L. L. He, V. S. Urban, H. M. Tse, E. Kharlampieva, Chem. Mater. 2018, 30, 344.
- 225S. Ma, H. Lee, Y. Liang, F. Zhou, Angew. Chem. Int. Ed. 2016, 55, 5793; Angew. Chem. 2016, 128, 5887.
- 226M. Shin, K. Kim, W. Shim, J. W. Yang, H. Lee, ACS Biomater. Sci. Eng. 2016, 2, 687.
- 227R. A. Meurer, S. Kemper, S. Knopp, T. Eichert, F. Jakob, E. Goldbach Heiner, U. Schwaneberg, A. Pich, Angew. Chem. Int. Ed. 2017, 56, 7380; Angew. Chem. 2017, 129, 7486.
- 228M. A. Rahim, Y. Hata, M. Björnmalm, Y. Ju, F. Caruso, Small 2018, 14, 1801202.
- 229M. Shamsipur, F. Molaabasi, M. Shanehsaz, A. A. Moosavi-Movahedi, Microchim. Acta 2015, 182, 1131.
- 230F. Jehle, P. Fratzl, M. J. Harrington, ACS Nano 2018, 12, 2160.