Ordered Porous Nitrogen-Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of N-Heterocycles
Dr. Yunhu Han
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ziyun Wang
School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG UK
These authors contributed equally to this work.
Search for more papers by this authorRuirui Xu
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710000 China
Search for more papers by this authorDr. Wei Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Wenxing Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100084 China
Search for more papers by this authorJian Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Jun Luo
Center for Electron Microscopy, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorKonglin Wu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Youqi Zhu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Chen Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Qing Peng
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Qiang Liu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Dr. P. Hu
School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Yunhu Han
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ziyun Wang
School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG UK
These authors contributed equally to this work.
Search for more papers by this authorRuirui Xu
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710000 China
Search for more papers by this authorDr. Wei Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Wenxing Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100084 China
Search for more papers by this authorJian Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Jun Luo
Center for Electron Microscopy, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorKonglin Wu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Youqi Zhu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Chen Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Qing Peng
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Qiang Liu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Dr. P. Hu
School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGraphical Abstract
One stop shop: Isolated cobalt single-atom sites stabilized on an ordered porous nitrogen-doped carbon matrix are highly efficient catalysts for acceptorless dehydrogenation of N-heterocycles to release H2, and the reverse transfer hydrogenation (or hydrogenation) of N-heterocycles with a hydrogen source to store H2.
Abstract
Single-atom catalysts (SACs) have been explored widely as potential substitutes for homogeneous catalysts. Isolated cobalt single-atom sites were stabilized on an ordered porous nitrogen-doped carbon matrix (ISAS-Co/OPNC). ISAS-Co/OPNC is a highly efficient catalyst for acceptorless dehydrogenation of N-heterocycles to release H2. ISAS-Co/OPNC also exhibits excellent catalytic activity for the reverse transfer hydrogenation (or hydrogenation) of N-heterocycles to store H2, using formic acid or external hydrogen as a hydrogen source. The catalytic performance of ISAS-Co/OPNC in both reactions surpasses previously reported homogeneous and heterogeneous precious-metal catalysts. The reaction mechanisms are systematically investigated using first-principles calculations and it is suggested that the Eley–Rideal mechanism is dominant.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201805467-sup-0001-misc_information.pdf4.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Weissermel, H. J. Arpel, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pp. 59–89.
10.1002/9783527619191.ch3 Google Scholar
- 2A. Sartbaeva, V. L. Kuznetsov, S. A. Wells, P. P. Edwards, Energy Environ. Sci. 2008, 1, 79–85.
- 3
- 3aU. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 2009, 48, 6608–6630; Angew. Chem. 2009, 121, 6732–6757;
- 3bP. Makowski, A. Thomas, P. Kuhn, P. Goettmann, Energy Environ. Sci. 2009, 2, 480–490.
- 4
- 4aR. H. Crabtree, Energy Environ. Sci. 2008, 1, 134–138;
- 4bP. Jessop, Nat. Chem. 2009, 1, 350–351.
- 5
- 5aR. Yamaguchi, C. Ikeda, Y. Takahashi, K. Fujita, J. Am. Chem. Soc. 2009, 131, 8410–8412;
- 5bK. Fujita, Y. Tanaka, M. Kobayashi, R. Yamaguchi, J. Am. Chem. Soc. 2014, 136, 4829–4832;
- 5cS. Chakraborty, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2014, 136, 8564–8567.
- 6E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257–10274.
- 7
- 7aX. Wang, W. X. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. X. Ju, J. C. Dong, L. R. Zheng, W. S. Yan, X. S. Zheng, Z. J. Li, X. Q. Wang, J. Yang, D. S. He, Y. Wang, Z. X. Deng, Y. E. Wu, Y. D. Li, J. Am. Chem. Soc. 2017, 139, 9419–9422;
- 7bL. C. Bai, X. Wang, Q. Chen, Y. F. Ye, H. Q. Zheng, J. H. Guo, Y. D. Yin, C. B. Gao, Angew. Chem. Int. Ed. 2016, 55, 15656–15661; Angew. Chem. 2016, 128, 15885–15890;
- 7cR. Adam, J. R. Cabrero-Antonino, A. Spannenberg, K. Junge, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 3216–3220; Angew. Chem. 2017, 129, 3264–3268;
- 7dF. Chen, B. Sahoo, C. Kreyenschulte, H. Lund, M. Zheng, L. He, K. Junge, M. Beller, Chem. Sci. 2017, 8, 6239–6246;
- 7eZ. Z. Wei, Y. Q. Chen, J. Wang, D. F. Su, M. H. Tang, S. J. Mao, Y. Wang, ACS Catal. 2016, 6, 5816–5822.
- 8
- 8aX. J. Cui, Y. H. Li, S. Bachmann, M. Scalone, A.-E. Surkus, K. Junge, C. Topf, M. Beller, J. Am. Chem. Soc. 2015, 137, 10652–10658;
- 8bA. V. Iosub, S. S. Stahl, Org. Lett. 2015, 17, 4404–4407;
- 8cG. Jaiswal, V. G. Landge, D. Jagadeesan, E. Balaraman, Nat. Commun. 2017, 8, 2147–2160.
- 9
- 9aC. Deraedt, R. Ye, W. T. Ralston, F. D. Toste, G. A. Somorjai, J. Am. Chem. Soc. 2017, 139, 18084–18092;
- 9bR. B. Xu, S. Chakraborty, H. M. Yuan, W. D. Jones, ACS Catal. 2015, 5, 6350–6354;
- 9cS. K. Moromi, S. M. A. H. Siddiki, K. Kon, T. Toyao, K. Shimizu, Catal. Today 2017, 281, 507–511.
- 10
- 10aM. L. Zhang, Y. G. Wang, W. X. Chen, J. C. Dong, L. R. Zheng, J. Luo, J. W. Wan, S. B. Tian, W.-C. Cheong, D. S. Wang, Y. D. Li, J. Am. Chem. Soc. 2017, 139, 10976–10979;
- 10bY. H. Han, Y. G. Wang, W. X. Chen, R. R. Xu, L. R. Zheng, J. Zhang, J. Luo, R. A. Shen, Y. Q. Zhu, W.-C. Cheong, C. Chen, Q. Peng, D. S. Wang, Y. D. Li, J. Am. Chem. Soc. 2017, 139, 17269–17272;
- 10cX.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748;
- 10dW. G. Liu, L. L. Zhang, X. Liu, X. Y. Liu, X. F. Yang, S. Miao, W. T. Wang, A. Q. Wang, T. Zhang, J. Am. Chem. Soc. 2017, 139, 10790–10798;
- 10eJ. X. Liang, Q. Yu, X. F. Yang, T. Zhang, J. Li, Nano Res. 2018, 11, 1599–1611;
- 10fJ. Lin, X. D. Wang, Sci. China Mater. 2017, https://doi.org/10.1007/s40843-017-9189-9187.
- 11
- 11aL. L. Lin, W. Zhou, R. Gao, S. Y. Yao, X. Zhang, W. Q. Xu, S. J. Zheng, Z. Jiang, Q. L. Yu, Y. W. Li, C. Shi, X. D. Wen, D. Ma, Nature 2017, 544, 80–83;
- 11bG. Gao, Y. Jiao, E. R. Waclawik, A. Du, J. Am. Chem. Soc. 2016, 138, 6292–6297.
- 12
- 12aH. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. L. Wang, J. J. Li, S. Q. Wei, J. L. Lu, J. Am. Chem. Soc. 2015, 137, 10484–10487;
- 12bN. C. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. W. Xiao, R. Y. Li, T.-K. Sham, L. M. Liu, G. A. Botton, X. L. Sun, Nat. Commun. 2016, 7, 13638–13647.
- 13
- 13aS. Kundu, T. C. Nagaiah, W. Xia, Y. Wang, S. V. Dommele, J. H. Bitter, M. Santa, G. Grundmeier, M. Bron, W. Schuhmann, M. Muhler, J. Phys. Chem. C 2009, 113, 14302–14310;
- 13bR. Pietrzak, H. Wachowska, P. Nowicki, Energy Fuels 2006, 20, 1275–1280;
- 13cF. Kapteijn, J. A. Moulijn, S. Matzner, H. P. Boehm, Carbon 1999, 37, 1143–1150.
- 14
- 14aX. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427–2431;
- 14bH. W. Liang, S. Brüller, R. Dong, J. Zhang, X. Feng, K. Müllen, Nat. Commun. 2015, 6, 7992–8000.
- 15
- 15aM. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 2009, 324, 71–74;
- 15bJ. Herranz, F. Jaouen, M. Lefevre, U. I. Kramm, E. Proietti, J.-P. Dodelet, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, P. Bertrand, J. Phys. Chem. C 2011, 115, 16087–16097.