Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS2 Anode for Lithium-Ion Storage
Dr. Zhiqiang Zhu
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Yuxin Tang
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorZhisheng Lv
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorJiaqi Wei
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Yanyan Zhang
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Renheng Wang
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Wei Zhang
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Huarong Xia
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorMingzheng Ge
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorCorresponding Author
Prof. Xiaodong Chen
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Zhiqiang Zhu
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Yuxin Tang
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorZhisheng Lv
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorJiaqi Wei
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Yanyan Zhang
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Renheng Wang
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Wei Zhang
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Huarong Xia
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorMingzheng Ge
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorCorresponding Author
Prof. Xiaodong Chen
Innovative Centre for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorGraphical Abstract
An optimum amount (10 wt %) of fluoroethylene carbonate (FEC) as electrolyte additive enables a robust LiF-rich SEI on MoS2, which significantly suppress the continuous decomposition of electrolytes. As a result, MoS2 in the FEC-containing electrolyte shows an improved lithium storage performance, with a reversible capacity of about 770 mAh g−1 for 200 cycles at 1 A g−1 and a stable capacity of about 510 mAh g−1 at 20 A g−1.
Abstract
As a high-capacity anode for lithium-ion batteries (LIBs), MoS2 suffers from short lifespan that is due in part to its unstable solid electrolyte interphase (SEI). The cycle life of MoS2 can be greatly extended by manipulating the SEI with a fluoroethylene carbonate (FEC) additive. The capacity of MoS2 in the electrolyte with 10 wt % FEC stabilizes at about 770 mAh g−1 for 200 cycles at 1 A g−1, which far surpasses the FEC-free counterpart (ca. 40 mAh g−1 after 150 cycles). The presence of FEC enables a robust LiF-rich SEI that can effectively inhibit the continual electrolyte decomposition. A full cell with a LiNi0.5Co0.3Mn0.2O2 cathode also gains improved performance in the FEC-containing electrolyte. These findings reveal the importance of controlling SEI formation on MoS2 toward promoted lithium storage, opening a new avenue for developing metal sulfides as high-capacity electrodes for LIBs.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201712907-sup-0001-misc_information.pdf9.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Xu, W. Liu, Y. Kim, J. Cho, Nano Today 2014, 9, 604;
- 1bY. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44, 5926;
- 1cL. Peng, Y. Zhu, D. Chen, R. S. Ruoff, G. Yu, Adv. Energy Mater. 2016, 6, 1600025.
- 2
- 2aT. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy Environ. Sci. 2014, 7, 209;
- 2bH. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, Adv. Mater. 2015, 27, 3687;
- 2cT. Wang, S. Chen, H. Pang, H. Xue, Y. Yu, Adv. Sci. 2017, 4, 1600289.
- 3
- 3aH. Liu, D. Su, R. Zhou, B. Sun, G. Wang, S. Qiao, Adv. Energy Mater. 2012, 2, 970;
- 3bZ. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, Angew. Chem. Int. Ed. 2014, 53, 12794; Angew. Chem. 2014, 126, 13008;
- 3cX. Wang, G. Li, M. H. Seo, F. M. Hassan, M. A. Hoque, Z. Chen, Adv. Energy Mater. 2015, 5, 1501106;
- 3dZ. Deng, H. Jiang, Y. Hu, Y. Liu, L. Zhang, H. Liu, C. Li, Adv. Mater. 2017, 29, 1603020.
- 4
- 4aY. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M. R. Zachariah, C. Wang, Nano Lett. 2013, 13, 470;
- 4bC. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. Bao, Nat. Chem. 2013, 5, 1042;
- 4cJ. Liu, N. Li, M. D. Goodman, H. Zhang, E. S. Epstein, B. Huang, Z. Pan, J. Kim, J. H. Choi, X. Huang, J. Liu, K. J. Hsia, S. J. Dillon, P. V. Braun, ACS Nano 2015, 9, 1985.
- 5
- 5aC. Zhu, X. Mu, P. A. van Aken, Y. Yu, J. Maier, Angew. Chem. Int. Ed. 2014, 53, 2152; Angew. Chem. 2014, 126, 2184;
- 5bT. Shan, S. Xin, Y. You, H. Cong, S. Yu, A. Manthiram, Angew. Chem. Int. Ed. 2016, 55, 12783; Angew. Chem. 2016, 128, 12975;
- 5cX. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, ACS Nano 2017, 11, 8429;
- 5dX. Li, J. Zai, S. Xiang, Y. Liu, X. He, Z. Xu, K. Wang, Z. Ma, X. Qian, Adv. Energy Mater. 2016, 6, 1601056;
- 5eY. Fang, Y. Lv, F. Gong, A. A. Elzatahry, G. Zheng, D. Zhao, Adv. Mater. 2016, 28, 9385.
- 6
- 6aY. Liu, X. He, D. Hanlon, A. Harvey, U. Khan, Y. Li, J. N. Coleman, ACS Nano 2016, 10, 5980;
- 6bY. Wang, Z. Ma, Y. Chen, M. Zou, M. Yousaf, Y. Yang, L. Yang, A. Cao, R. P. Han, Adv. Mater. 2016, 28, 10175.
- 7
- 7aX. Yu, H. Hu, Y. Wang, H. Chen, X. Lou, Angew. Chem. Int. Ed. 2015, 54, 7395; Angew. Chem. 2015, 127, 7503;
- 7bY. Chen, X. Yu, Z. Li, U. Paik, X. Lou, Sci. Adv. 2016, 2, e 1600021.
- 8K. Wang, X. Li, J. Chen, Adv. Mater. 2015, 27, 527.
- 9K. Xu, Chem. Rev. 2014, 114, 11503.
- 10K. Ushirogata, K. Sodeyama, Y. Okuno, Y. Tateyama, J. Am. Chem. Soc. 2013, 135, 11967.
- 11
- 11aA. M. Haregewoin, A. S. Wotango, B. J. Hwang, Energy Environ. Sci. 2016, 9, 1955;
- 11bS. Zhang, J. Power Sources 2006, 162, 1379.
- 12J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
- 13
- 13aH. Hwang, H. Kim, J. Cho, Nano Lett. 2011, 11, 4826;
- 13bP. Wang, H. Sun, Y. Ji, W. Li, X. Wang, Adv. Mater. 2014, 26, 964.
- 14
- 14aX. Xu, Z. Fan, X. Yu, S. Ding, D. Yu, X. W. Lou, Adv. Energy Mater. 2014, 4, 1400902;
- 14bL. Oakes, R. Carter, T. Hanken, A. P. Cohn, K. Share, B. Schmidt, C. L. Pint, Nat. Commun. 2016, 7, 11796.
- 15J. Wang, J. Liu, D. Chao, J. Yan, J. Lin, Z. Shen, Adv. Mater. 2014, 26, 7162.
- 16
- 16aC. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Chem. Mater. 2015, 27, 2591;
- 16bX. Zhang, X. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.
- 17B. Li, Y. Wang, H. Lin, J. Liu, L. Xing, M. Xu, W. Li, Electrochim. Acta 2014, 141, 263.
- 18
- 18aQ. Wang, J. Li, J. Phys. Chem. C 2007, 111, 1675;
- 18bQ. Su, S. Wang, M. Feng, G. Du, B. Xu, Sci. Rep. 2017, 7, 7275.
- 19
- 19aJ. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2003, 5, 5215;
- 19bX. Guo, X. Fang, Y. Mao, Z. Wang, F. Wu, L. Chen, J. Phys. Chem. C 2011, 115, 3803.
- 20Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng, K. Shu, G. G. Wallace, Adv. Funct. Mater. 2017, 27, 1700234.
- 21Y. Gong, S. Yang, L. Zhan, L. Ma, R. Vajtai, P. M. Ajayan, Adv. Funct. Mater. 2014, 24, 125.
- 22
- 22aJ. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J. G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012;
- 22bY. Tang, J. Deng, W. Li, O. I. Malyi, Y. Zhang, X. Zhou, S. Pan, J. Wei, Y. Cai, Z. Chen, X. Chen, Adv. Mater. 2017, 29, 1701828.
- 23Y. Lu, Z. Tu, L. A. Archer, Nat. Mater. 2014, 13, 961.
- 24K. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney, L. J. Webb, Y. S. Meng, K. J. Stevenson, Chem. Mater. 2015, 27, 5531.
- 25A. Shkrob, J. F. Wishart, D. P. Abraham, J. Phys. Chem. C 2015, 119, 14954.
- 26Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.