Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron Catalysts
M. Sc. Fabian Kallmeier
Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Rhett Kempe
Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
Search for more papers by this authorM. Sc. Fabian Kallmeier
Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Rhett Kempe
Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
Search for more papers by this authorGraphical Abstract
Abstract
The sustainable use of the resources on our planet is essential. Noble metals are very rare and are diversely used in key technologies, such as catalysis. Manganese is the third most abundant transition metal of the Earth's crust and based on the recently discovered impressive reactivity in hydrogenation and dehydrogenation reactions, is a potentially useful noble-metal “replacement”. The hope of novel selectivity profiles, not possible with noble metals, is also an aim of such a “replacement”. The reactivity of manganese complexes in (de)hydrogenation reactions was demonstrated for the first time in 2016. Herein, we summarize the work that has been published since then and especially discuss the importance of homogeneous manganese catalysts in comparison to cobalt and iron catalysts.
Conflict of interest
The authors declare no conflict of interest.
References
- 1K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003.
10.1002/9783527619191 Google Scholar
- 2J. R. Carney, B. R. Dillon, S. P. Thomas, Eur. J. Org. Chem. 2016, 3912–3929.
- 3D. A. Valyaev, G. Lavigne, N. Lugan, Coord. Chem. Rev. 2016, 308, 191–235.
- 4A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben-David, N. A. Espinosa Jalapa, D. Milstein, J. Am. Chem. Soc. 2016, 138, 4298–4301.
- 5M. Garbe, K. Junge, M. Beller, Eur. J. Org. Chem. 2017, 4344–4362.
- 6B. Maji, M. Barman, Synthesis 2017, 49, 3377–3393.
- 7S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann, R. Ludwig, K. Junge, M. Beller, J. Am. Chem. Soc. 2016, 138, 8809–8814.
- 8F. Kallmeier, T. Irrgang, T. Dietel, R. Kempe, Angew. Chem. Int. Ed. 2016, 55, 11806–11809; Angew. Chem. 2016, 128, 11984–11988.
- 9A. Bruneau-Voisine, D. Wang, T. Roisnel, C. Darcel, J.-B. Sortais, Catal. Commun. 2017, 92, 1–4.
- 10G. Zhang, B. L. Scott, S. K. Hanson, Angew. Chem. Int. Ed. 2012, 51, 12102–12106; Angew. Chem. 2012, 124, 12268–12272.
- 11G. Zhang, K. V. Vasudevan, B. L. Scott, S. K. Hanson, J. Am. Chem. Soc. 2013, 135, 8668–8681.
- 12D. Gärtner, A. Welther, B. R. Rad, R. Wolf, A. J. von Wangelin, Angew. Chem. Int. Ed. 2014, 53, 3722–3726; Angew. Chem. 2014, 126, 3796–3800.
- 13S. Rösler, J. Obenauf, R. Kempe, J. Am. Chem. Soc. 2015, 137, 7998–8001.
- 14H.-J. Knölker, E. Baum, H. Goesmann, R. Klauss, Angew. Chem. Int. Ed. 1999, 38, 2064–2066;
10.1002/(SICI)1521-3773(19990712)38:13/14<2064::AID-ANIE2064>3.0.CO;2-W CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 2196–2199.10.1002/(SICI)1521-3757(19990712)111:13/14<2196::AID-ANGE2196>3.0.CO;2-F Web of Science® Google Scholar
- 15C. P. Casey, H. Guan, J. Am. Chem. Soc. 2007, 129, 5816–5817.
- 16S. Fleischer, S. Zhou, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 5120–5124; Angew. Chem. 2013, 125, 5224–5228.
- 17D. S. Mérel, M. Elie, J.-F. Lohier, S. Gaillard, J.-L. Renaud, ChemCatChem 2013, 5, 2939–2945.
- 18S. Vailati Facchini, J.-M. Neudörfl, L. Pignataro, M. Cettolin, C. Gennari, A. Berkessel, U. Piarulli, ChemCatChem 2017, 9, 1461–1468.
- 19R. Langer, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2011, 50, 2120–2124; Angew. Chem. 2011, 123, 2168–2172.
- 20R. Langer, M. A. Iron, L. Konstantinovski, Y. Diskin-Posner, G. Leitus, Y. Ben-David, D. Milstein, Chem. Eur. J. 2012, 18, 7196–7209.
- 21N. Gorgas, B. Stöger, L. F. Veiros, E. Pittenauer, G. Allmaier, K. Kirchner, Organometallics 2014, 33, 6905–6914.
- 22C. Schröder-Holzhacker, N. Gorgas, B. Stöger, K. Kirchner, Monatsh. Chem. 2016, 147, 1023–1030.
- 23N. Gorgas, B. Stöger, L. F. Veiros, K. Kirchner, ACS Catal. 2016, 6, 2664–2672.
- 24S. Chakraborty, P. O. Lagaditis, M. Förster, E. A. Bielinski, N. Hazari, M. C. Holthausen, W. D. Jones, S. Schneider, ACS Catal. 2014, 4, 3994–4003.
- 25B. Butschke, M. Feller, Y. Diskin-Posner, D. Milstein, Catal. Sci. Technol. 2016, 6, 4428–4437.
- 26M. B. Widegren, G. J. Harkness, A. M. Z. Slawin, D. B. Cordes, M. L. Clarke, Angew. Chem. Int. Ed. 2017, 56, 5825–5828; Angew. Chem. 2017, 129, 5919–5922.
- 27M. Garbe, K. Junge, S. Walker, Z. Wei, H. Jiao, A. Spannenberg, S. Bachmann, M. Scalone, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 11237–11241; Angew. Chem. 2017, 129, 11389–11393.
- 28D. Zhang, E. Zhu, Z. Lin, Z.-B. Wei, Y. Li, J. Gao, Asian J. Org. Chem. 2016, 5, 1323–1326.
- 29C. Sui-Seng, F. Freutel, A. J. Lough, R. H. Morris, Angew. Chem. Int. Ed. 2008, 47, 940–943; Angew. Chem. 2008, 120, 954–957.
- 30A. Berkessel, S. Reichau, A. von der Höh, N. Leconte, J.-M. Neudörfl, Organometallics 2011, 30, 3880–3887.
- 31P. Gajewski, M. Renom-Carrasco, S. V. Facchini, L. Pignataro, L. Lefort, J. G. de Vries, R. Ferraccioli, A. Forni, U. Piarulli, C. Gennari, Eur. J. Org. Chem. 2015, 1887–1893.
- 32P. Gajewski, M. Renom-Carrasco, S. V. Facchini, L. Pignataro, L. Lefort, J. G. De Vries, R. Ferraccioli, U. Piarulli, C. Gennari, Eur. J. Org. Chem. 2015, 5526–5536.
- 33R. Hodgkinson, A. Del Grosso, G. J. Clarkson, M. Wills, Dalton Trans. 2016, 45, 3992–4005.
- 34W. Zuo, S. Tauer, D. E. Prokopchuk, R. H. Morris, Organometallics 2014, 33, 5791–5801.
- 35P. O. Lagaditis, P. E. Sues, J. F. Sonnenberg, K. Y. Wan, A. J. Lough, R. H. Morris, J. Am. Chem. Soc. 2014, 136, 1367–1380.
- 36J. F. Sonnenberg, A. J. Lough, R. H. Morris, Organometallics 2014, 33, 6452–6465.
- 37Y. Li, S. Yu, X. Wu, J. Xiao, W. Shen, Z. Dong, J. Gao, J. Am. Chem. Soc. 2014, 136, 4031–4039.
- 38S. A. M. Smith, P. O. Lagaditis, A. Lüpke, A. J. Lough, R. H. Morris, Chem. Eur. J. 2017, 23, 7212–7216.
- 39M. Perez, S. Elangovan, A. Spannenberg, K. Junge, M. Beller, ChemSusChem 2017, 10, 83–86.
- 40A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais, Org. Lett. 2017, 19, 3656–3659.
- 41G. Zhang, S. K. Hanson, Chem. Commun. 2013, 49, 10151.
- 42S. Enthaler, B. Hagemann, G. Erre, K. Junge, M. Beller, Chem. Asian J. 2006, 1, 598–604.
- 43S. Enthaler, G. Erre, M. K. Tse, K. Junge, M. Beller, Tetrahedron Lett. 2006, 47, 8095–8099.
- 44V. V. K. M. Kandepi, J. M. S. Cardoso, E. Peris, B. Royo, Organometallics 2010, 29, 2777–2782.
- 45M. D. Bala, M. I. Ikhile, J. Mol. Catal. A 2014, 385, 98–105.
- 46N. Dai, R. Shang, M. Fu, Y. Fu, Chin. J. Chem. 2015, 33, 405–408.
- 47T. N. Plank, J. L. Drake, D. K. Kim, T. W. Funk, Adv. Synth. Catal. 2012, 354, 597–601.
- 48A. Buchard, H. Heuclin, A. Auffrant, X. F. Le Goff, P. Le Floch, Dalton Trans. 2009, 1659.
- 49T. Hashimoto, S. Urban, R. Hoshino, Y. Ohki, K. Tatsumi, F. Glorius, Organometallics 2012, 31, 4474–4479.
- 50A. Zirakzadeh, S. R. M. M. de Aguiar, B. Stöger, M. Widhalm, K. Kirchner, ChemCatChem 2017, 9, 1744–1748.
- 51R. ter Halle, A. Bréhéret, E. Schulz, C. Pinel, M. Lemaire, Tetrahedron: Asymmetry 1997, 8, 2101–2108.
- 52Y.-Y. Li, S.-L. Yu, W.-Y. Shen, J.-X. Gao, Acc. Chem. Res. 2015, 48, 2587–2598.
- 53N. Meyer, A. J. Lough, R. H. Morris, Chem. Eur. J. 2009, 15, 5605–5610.
- 54J. F. Sonnenberg, N. Coombs, P. A. Dube, R. H. Morris, J. Am. Chem. Soc. 2012, 134, 5893–5899.
- 55P. O. Lagaditis, A. J. Lough, R. H. Morris, Inorg. Chem. 2010, 49, 10057–10066.
- 56W. Zuo, A. J. Lough, Y. F. Li, R. H. Morris, Science 2013, 342, 1080–1083.
- 57L. De Luca, A. Mezzetti, Angew. Chem. Int. Ed. 2017, 56, 11949–11953; Angew. Chem. 2017, 129, 12111–12115.
- 58J. P. Hopewell, J. E. D. Martins, T. C. Johnson, J. Godfrey, M. Wills, Org. Biomol. Chem. 2012, 10, 134–145.
- 59S. Elangovan, M. Garbe, H. Jiao, A. Spannenberg, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 15364–15368; Angew. Chem. 2016, 128, 15590–15594.
- 60N. A. Espinosa-Jalapa, A. Nerush, L. J. W. Shimon, G. Leitus, L. Avram, Y. Ben-David, D. Milstein, Chem. Eur. J. 2017, 23, 5934–5938.
- 61R. van Putten, E. A. Uslamin, M. Garbe, C. Liu, A. Gonzalez-de-Castro, M. Lutz, K. Junge, E. J. M. Hensen, M. Beller, L. Lefort, et al., Angew. Chem. Int. Ed. 2017, 56, 7531–7534; Angew. Chem. 2017, 129, 7639–7642.
- 62D. Srimani, A. Mukherjee, A. F. G. Goldberg, G. Leitus, Y. Diskin-Posner, L. J. W. Shimon, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2015, 54, 12357–12360; Angew. Chem. 2015, 127, 12534–12537.
- 63T. J. Korstanje, J. Ivar van der Vlugt, C. J. Elsevier, B. de Bruin, Science 2015, 350, 298–302.
- 64J. Yuwen, S. Chakraborty, W. W. Brennessel, W. D. Jones, ACS Catal. 2017, 7, 3735–3740.
- 65T. Zell, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2014, 53, 4685–4689; Angew. Chem. 2014, 126, 4773–4777.
- 66S. Chakraborty, H. Dai, P. Bhattacharya, N. T. Fairweather, M. S. Gibson, J. A. Krause, H. Guan, J. Am. Chem. Soc. 2014, 136, 7869–7872.
- 67S. Werkmeister, K. Junge, B. Wendt, E. Alberico, H. Jiao, W. Baumann, H. Junge, F. Gallou, M. Beller, Angew. Chem. Int. Ed. 2014, 53, 8722–8726; Angew. Chem. 2014, 126, 8867–8871.
- 68S. Elangovan, B. Wendt, C. Topf, S. Bachmann, M. Scalone, A. Spannenberg, H. Jiao, W. Baumann, K. Junge, M. Beller, Adv. Synth. Catal. 2016, 358, 820–825.
- 69P. Gajewski, A. Gonzalez-de-Castro, M. Renom-Carrasco, U. Piarulli, C. Gennari, J. G. de Vries, L. Lefort, L. Pignataro, ChemCatChem 2016, 8, 3431–3435.
- 70V. Papa, J. R. Cabrero-Antonino, E. Alberico, A. Spannenberg, K. Junge, H. Junge, M. Beller, Chem. Sci. 2017, 8, 3576–3585.
- 71S. Kar, A. Goeppert, J. Kothandaraman, G. K. S. Prakash, ACS Catal. 2017, 7, 6347–6351.
- 72J. A. Garg, S. Chakraborty, Y. Ben-David, D. Milstein, Chem. Commun. 2016, 52, 5285–5288.
- 73K. Dong, S. Elangovan, R. Sang, A. Spannenberg, R. Jackstell, K. Junge, Y. Li, M. Beller, Nat. Commun. 2016, 7, 12075.
- 74F. Schneck, M. Assmann, M. Balmer, K. Harms, R. Langer, Organometallics 2016, 35, 1931–1943.
- 75N. M. Rezayee, D. C. Samblanet, M. S. Sanford, ACS Catal. 2016, 6, 6377–6383.
- 76U. Jayarathne, Y. Zhang, N. Hazari, W. H. Bernskoetter, Organometallics 2017, 36, 409–416.
- 77A. Dubey, L. Nencini, R. R. Fayzullin, C. Nervi, J. R. Khusnutdinova, ACS Catal. 2017, 7, 3864–3868.
- 78F. Bertini, M. Glatz, N. Gorgas, B. Stöger, M. Peruzzini, L. F. Veiros, K. Kirchner, L. Gonsalvi, Chem. Sci. 2017, 8, 5024–5029.
- 79C. Federsel, C. Ziebart, R. Jackstell, W. Baumann, M. Beller, Chem. Eur. J. 2012, 18, 72–75.
- 80P. Daw, S. Chakraborty, G. Leitus, Y. Diskin-Posner, Y. Ben-David, D. Milstein, ACS Catal. 2017, 7, 2500–2504.
- 81Y. M. Badiei, W.-H. Wang, J. F. Hull, D. J. Szalda, J. T. Muckerman, Y. Himeda, E. Fujita, Inorg. Chem. 2013, 52, 12576–12586.
- 82M. S. Jeletic, M. T. Mock, A. M. Appel, J. C. Linehan, J. Am. Chem. Soc. 2013, 135, 11533–11536.
- 83A. Z. Spentzos, C. L. Barnes, W. H. Bernskoetter, Inorg. Chem. 2016, 55, 8225–8233.
- 84C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 9777–9780; Angew. Chem. 2010, 122, 9971–9974.
- 85C. Ziebart, C. Federsel, P. Anbarasan, R. Jackstell, W. Baumann, A. Spannenberg, M. Beller, J. Am. Chem. Soc. 2012, 134, 20701–20704.
- 86R. Langer, Y. Diskin-Posner, G. Leitus, L. J. W. Shimon, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2011, 50, 9948–9952; Angew. Chem. 2011, 123, 10122–10126.
- 87O. Rivada-Wheelaghan, A. Dauth, G. Leitus, Y. Diskin-Posner, D. Milstein, Inorg. Chem. 2015, 54, 4526–4538.
- 88F. Bertini, N. Gorgas, B. Stöger, M. Peruzzini, L. F. Veiros, K. Kirchner, L. Gonsalvi, ACS Catal. 2016, 6, 2889–2893.
- 89F. Zhu, L. Zhu-Ge, G. Yang, S. Zhou, ChemSusChem 2015, 8, 609–612.
- 90Y. Zhang, A. D. MacIntosh, J. L. Wong, E. A. Bielinski, P. G. Williard, B. Q. Mercado, N. Hazari, W. H. Bernskoetter, Chem. Sci. 2015, 6, 4291–4299.
- 91T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science 2010, 330, 1222–1227.
- 92C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695–699.
- 93M. Behrens, F. Studt, I. Kasatkin, S. Kuhl, M. Havecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, et al., Science 2012, 336, 893–897.
- 94M. Trincado, D. Banerjee, H. Grützmacher, Energy Environ. Sci. 2014, 7, 2464–2503.
- 95M. Andérez-Fernández, L. K. Vogt, S. Fischer, W. Zhou, H. Jiao, M. Garbe, S. Elangovan, K. Junge, H. Junge, R. Ludwig, et al., Angew. Chem. Int. Ed. 2017, 56, 559–562; Angew. Chem. 2017, 129, 574–577.
- 96E. Balaraman, E. Khaskin, G. Leitus, D. Milstein, Nat. Chem. 2013, 5, 122–125.
- 97A. M. Tondreau, J. M. Boncella, Organometallics 2016, 35, 2049–2052.
- 98E. A. Bielinski, M. Förster, Y. Zhang, W. H. Bernskoetter, N. Hazari, M. C. Holthausen, ACS Catal. 2015, 5, 2404–2415.
- 99E. Alberico, P. Sponholz, C. Cordes, M. Nielsen, H.-J. Drexler, W. Baumann, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 14162–14166; Angew. Chem. 2013, 125, 14412–14416.
- 100D. H. Nguyen, Y. Morin, L. Zhang, X. Trivelli, F. Capet, S. Paul, S. Desset, F. Dumeignil, R. M. Gauvin, ChemCatChem 2017, 9, 2652–2660.
- 101C. Gunanathan, D. Milstein, Science 2013, 341, 1229712.
- 102S. Chakraborty, U. Gellrich, Y. Diskin-Posner, G. Leitus, L. Avram, D. Milstein, Angew. Chem. Int. Ed. 2017, 56, 4229–4233; Angew. Chem. 2017, 129, 4293–4297.
- 103E. M. Lane, K. B. Uttley, N. Hazari, W. H. Bernskoetter, Organometallics 2017, 36, 2020–2025.
- 104D. Milstein, A. Kumar, N.-A. Espinosa-Jalapa, G. Leitus, Y. Diskin-Posner, L. Avram, Angew. Chem. Int. Ed. 2017, 56, 14992–14996; Angew. Chem. 2017, 129, 15188–15192.
- 105D. H. Nguyen, X. Trivelli, F. Capet, J.-F. Paul, F. Dumeignil, R. M. Gauvin, ACS Catal. 2017, 7, 2022–2032.
- 106M. Peña-López, H. Neumann, M. Beller, ChemCatChem 2015, 7, 865–871.
- 107N. A. Espinosa-Jalapa, A. Kumar, G. Leitus, Y. Diskin-Posner, D. Milstein, J. Am. Chem. Soc. 2017, 139, 11722–11725.
- 108M. Mastalir, M. Glatz, N. Gorgas, B. Stöger, E. Pittenauer, G. Allmaier, L. F. Veiros, K. Kirchner, Chem. Eur. J. 2016, 22, 12316–12320.
- 109G. Zhang, S. K. Hanson, Org. Lett. 2013, 15, 650–653.
- 110M. Bala, P. K. Verma, N. Kumar, U. Sharma, B. Singh, Can. J. Chem. 2013, 91, 732–737.
- 111J. O. Bauer, S. Chakraborty, D. Milstein, ACS Catal. 2017, 7, 4462–4466.
- 112S. Chakraborty, U. K. Das, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2017, 139, 11710–11713.
- 113N. Deibl, K. Ament, R. Kempe, J. Am. Chem. Soc. 2015, 137, 12804–12807.
- 114M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc. 2016, 138, 15543–15546.
- 115N. Deibl, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 1663–1666; Angew. Chem. 2017, 129, 1685–1688.
- 116S. Elangovan, J.-B. Sortais, M. Beller, C. Darcel, Angew. Chem. Int. Ed. 2015, 54, 14483–14486; Angew. Chem. 2015, 127, 14691–14694.
- 117G. Zhang, J. Wu, H. Zeng, S. Zhang, Z. Yin, S. Zheng, Org. Lett. 2017, 19, 1080–1083.
- 118S. Michlik, R. Kempe, Nat. Chem. 2013, 5, 140–144.
- 119S. Qu, Y. Dang, C. Song, M. Wen, K.-W. Huang, Z.-X. Wang, J. Am. Chem. Soc. 2014, 136, 4974–4991.
- 120F. Kallmeier, B. Dudziec, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 7261–7265; Angew. Chem. 2017, 129, 7367–7371.
- 121M. Mastalir, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc. 2017, 139, 8812–8815.
- 122M. H. S. A. Hamid, P. A. Slatford, J. M. J. Williams, Adv. Synth. Catal. 2007, 349, 1555–1575.
- 123G. Guillena, D. J. Ramón, M. Yus, Chem. Rev. 2010, 110, 1611–1641.
- 124A. J. A. Watson, J. M. J. Williams, Science 2010, 329, 635–636.
- 125S. Ruch, T. Irrgang, R. Kempe, Chem. Eur. J. 2014, 20, 13279–13285.
- 126T. Hille, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 371–374; Angew. Chem. 2017, 129, 377–381.
- 127S. Elangovan, J. Neumann, J.-B. Sortais, K. Junge, C. Darcel, M. Beller, Nat. Commun. 2016, 7, 12641.
- 128J. Neumann, S. Elangovan, A. Spannenberg, K. Junge, M. Beller, Chem. Eur. J. 2017, 23, 5410–5413.
- 129A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais, J. Catal. 2017, 347, 57–62.
- 130S. Rösler, M. Ertl, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed. 2015, 54, 15046–15050; Angew. Chem. 2015, 127, 15260–15264.
- 131G. Zhang, Z. Yin, S. Zheng, Org. Lett. 2016, 18, 300–303.
- 132Z. Yin, H. Zeng, J. Wu, S. Zheng, G. Zhang, ACS Catal. 2016, 6, 6546–6550.
- 133M. Mastalir, G. Tomsu, E. Pittenauer, G. Allmaier, K. Kirchner, Org. Lett. 2016, 18, 3462–3465.
- 134S. Midya, A. Mondal, A. Begum, E. Balaraman, Synthesis 2017, 49, 3957–3961.
- 135M. Bala, P. K. Verma, U. Sharma, N. Kumar, B. Singh, Green Chem. 2013, 15, 1687–1693.
- 136T. Yan, B. L. Feringa, K. Barta, Nat. Commun. 2014, 5, 5602.
- 137H.-J. Pan, T. W. Ng, Y. Zhao, Chem. Commun. 2015, 51, 11907–11910.
- 138T. Yan, B. L. Feringa, K. Barta, ACS Catal. 2016, 6, 381–388.
- 139B. Emayavaramban, M. Roy, B. Sundararaju, Chem. Eur. J. 2016, 22, 3952–3955.
- 140A. J. Rawlings, L. J. Diorazio, M. Wills, Org. Lett. 2015, 17, 1086–1089.
- 141M. Mastalir, B. Stöger, E. Pittenauer, M. Puchberger, G. Allmaier, K. Kirchner, Adv. Synth. Catal. 2016, 358, 3824–3831.
- 142M. Peña-López, P. Piehl, S. Elangovan, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 14967–14971; Angew. Chem. 2016, 128, 15191–15195.
- 143F. Freitag, T. Irrgang, R. Kempe, Chem. Eur. J. 2017, 23, 12110–12113.
- 144N. Deibl, R. Kempe, J. Am. Chem. Soc. 2016, 138, 10786–10789.
- 145J. Yang, X. Liu, D.-L. Meng, H.-Y. Chen, Z.-H. Zong, T.-T. Feng, K. Sun, Adv. Synth. Catal. 2012, 354, 328–334.
- 146S. Fu, Z. Shao, Y. Wang, Q. Liu, J. Am. Chem. Soc. 2017, 139, 11941–11948.
- 147A. M. Tondreau, R. Michalczyk, J. M. Boncella, Organometallics 2017, 36, 4179–4183.