Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions
Dr. Zhenhong He
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Qingli Qian
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Jun Ma
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Qinglei Meng
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Huacong Zhou
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Jinliang Song
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorProf. Dr. Zhimin Liu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Buxing Han
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)Search for more papers by this authorDr. Zhenhong He
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Qingli Qian
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Jun Ma
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Qinglei Meng
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Huacong Zhou
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorDr. Jinliang Song
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorProf. Dr. Zhimin Liu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Buxing Han
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)Search for more papers by this authorGraphical Abstract
Abstract
The effect of water on CO2 hydrogenation to produce higher alcohols (C2–C4) was studied. Pt/Co3O4, which had not been used previously for this reaction, was applied as the heterogeneous catalyst. It was found that water and the catalyst had an excellent synergistic effect for promoting the reaction. High selectivity of C2–C4 alcohols could be achieved at 140 °C (especially with DMI (1,3-dimethyl-2-imidazolidinone) as co-solvent), which is a much lower temperature than reported previously. The catalyst could be reused at least five times without reducing the activity and selectivity. D2O and 13CH3OH labeling experiments indicated that water involved in the reaction and promoted the reaction kinetically, and ethanol was formed via CH3OH as an intermediate.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201507585_sm_miscellaneous_information.pdf940.6 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aQ. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933;
- 1bC. Federsel, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 6254–6257; Angew. Chem. 2010, 122, 6392–6395;
- 1cM. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 2013, 52, 9620–9633; Angew. Chem. 2013, 125, 9798–9812.
- 2
- 2aX. Wang, M. Nakajima, R. Martin, J. Am. Chem. Soc. 2015, 137, 8924–8927;
- 2bL. Wu, Q. Liu, I. Fleischer, R. Jackstell, M. Beller, Nat. Commun. 2014, 5, 3091;
- 2cJ. Hu, J. Ma, Q. Zhu, Z. Zhang, C. Wu, B. Han, Angew. Chem. Int. Ed. 2015, 54, 5399–5403; Angew. Chem. 2015, 127, 5489–5493;
- 2dE. Blondiaux, J. Pouessel, T. Cantat, Angew. Chem. Int. Ed. 2014, 53, 12186–12190; Angew. Chem. 2014, 126, 12382–12386;
- 2eK. Beydoun, G. Ghattas, K. Thenert, J. Klankermayer, W. Leitner, Angew. Chem. Int. Ed. 2014, 53, 11010–11014; Angew. Chem. 2014, 126, 11190–11194;
- 2fX. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka, J. Ye, Angew. Chem. Int. Ed. 2014, 53, 11478–11482; Angew. Chem. 2014, 126, 11662–11666;
- 2gG. Centi, S. Perathoner, Catal. Today 2009, 148, 191–205;
- 2hS. Moret, P. J. Dyson, G. Laurenczy, Nat. Commun. 2014, 5, 4017;
- 2iZ. Zhang, Y. Xie, S. Hu, J. Song, T. Jiang, B. Han, Angew. Chem. Int. Ed. 2008, 47, 1127–1129; Angew. Chem. 2008, 120, 1143–1145;
- 2jW. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 2011, 40, 3703–3727.
- 3
- 3aJ. Ye, C. J. Liu, D. Mei, Q. Ge, J. Catal. 2014, 317, 44–53;
- 3bF. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2014, 6, 320–324;
- 3cT. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M. G. Willinger, Angew. Chem. Int. Ed. 2015, 54, 4544–4548; Angew. Chem. 2015, 127, 4627–4631;
- 3dS. Zander, E. L. Kunkes, M. E. Schuster, J. Schumann, G. Weinberg, D. Teschner, N. Jacobsen, R. Schlögl, M. Behrens, Angew. Chem. Int. Ed. 2013, 52, 6536–6540; Angew. Chem. 2013, 125, 6664–6669;
- 3eJ. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D. Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez, Science 2014, 345, 546–550;
- 3fN. M. Rezayee, C. A. Huff, M. S. Sanford, J. Am. Chem. Soc. 2015, 137, 1028–1031;
- 3gS. Wesselbaum, T. vom Stein, J. Klankermayer, W. Leitner, Angew. Chem. Int. Ed. 2012, 51, 7499–7502; Angew. Chem. 2012, 124, 7617–7620;
- 3hS. Wesselbaum, V. Moha, M. Meuresch, S. Brosinski, K. M. Thenert, J. Kothe, T. vom Stein, U. Englert, M. Hölscher, J. Klankermayer, W. Leitner, Chem. Sci. 2015, 6, 693–704.
- 4J. F. Knifton, J. J. Lin, Appl. Organomet. Chem. 1989, 3, 557–562.
- 5
- 5aJ. Goldemberg, Science 2007, 315, 808–810;
- 5bY. Choi, P. Liu, J. Am. Chem. Soc. 2009, 131, 13054–13061.
- 6H. Kusama, K. Okabe, K. Sayama, H. Arakawa, Energy 1997, 22, 343–348.
- 7H. Kusama, K. Okabe, K. Sayama, H. Arakawa, Catal. Today 1996, 28, 261–266.
- 8
- 8aH. Kurakata, Y. Izumi, K. Aika, Chem. Commun. 1996, 389–390;
- 8bY. Izumi, H. Kurakata, K. Aika, J. Catal. 1998, 175, 236–244.
- 9L. S. Davy, D. Nieskens, Y. Ferrari, R. Liu, J. Kolonko, Catal. Commun. 2011, 14, 111–113.
- 10T. Inui, T. Yamamoto, M. Inoue, H. Hara, T. Takeguchi, J. Kim, Appl. Catal. A 1999, 186, 395–406.
- 11S. Li, H. Guo, C. Luo, H. Zhang, L. Xiong, X. Chen, L. Ma, Catal. Lett. 2013, 143, 345–355.
- 12K. Tominaga, Y. Sasaki, M. Saito, K. Hagihara, T. Watanabe, J. Mol. Catal. 1994, 89, 51–56.
- 13Q. Qian, M. Cui, Z. He, C. Wu, Q. Zhu, Z. Zhang, J. Ma, G. Ying, J. Zhang, B. Han, Chem. Sci. 2015, 6, 5685–5689.
- 14M. O. Simon, C. J. Li, Chem. Soc. Rev. 2012, 41, 1415–1427.
- 15
- 15aG. L. Bezemer, T. J. Remans, A. P. van Bavel, A. L. Dugulan, J. Am. Chem. Soc. 2010, 132, 8540–8541;
- 15bN. Fischer, B. Clapham, T. Feltes, M. Claeys, ACS Catal. 2015, 5, 113–121;
- 15cW. Ma, G. Jacobs, D. E. Sparks, R. L. Spicer, B. H. Davis, J. L. S. Klettlinger, C. H. Yen, Catal. Today 2014, 228, 158–166.
- 16A. M. Abdel-Mageed, S. Eckle, R. J. Behm, J. Am. Chem. Soc. 2015, 137, 8672–8675.
- 17Y. Yang, C. A. Mims, D. H. Mei, C. H. F. Peden, C. T. Campbell, J. Catal. 2013, 298, 10–17.
- 18
- 18aH. Wang, W. Zhou, J. Liu, R. Si, G. Sun, M. Zhong, H. Su, H. Zhao, J. A. Rodriguez, S. J. Pennycook, J. C. Idrobo, W. Li, Y. Kou, D. Ma, J. Am. Chem. Soc. 2013, 135, 4149–4158;
- 18bR. W. Dorner, D. R. Hardy, F. W. Williams, H. D. Willauer, Energy Environ. Sci. 2010, 3, 884–890.
- 19S. Zhang, J. Shan, Y. Zhu, A. I. Frenkel, A. Patlolla, W. Huang, S. J. Yoon, L. Wang, H. Yoshida, S. Takeda, F. Tao, J. Am. Chem. Soc. 2013, 135, 8283–8293.
- 20R. Zhang, G. Wang, B. Wang, L. Ling, J. Phys. Chem. C 2014, 118, 5243–5254.
- 21M. B. Boucher, M. D. Marcinkowski, M. L. Liriano, C. J. Murphy, E. A. Lewis, A. D. Jewell, M. F. G. Mattera, G. Kyriakou, M. Flyzani-Stephanopoulos, E. C. H. Sykes, ACS Nano 2013, 7, 6181–6187.
- 22
- 22aZ. Chen, A. T. J. B. Eppink, B. Jiang, G. C. Groenenboom, X. Yang, D. H. Parker, Phys. Chem. Chem. Phys. 2011, 13, 2350–2355;
- 22bK. Kato, S. Y. Kang, X. Xu, T. Yamabe, J. Phys. Chem. B 2001, 105, 10340–10347;
- 22cS.-S. Bae, D. H. Kim, A. Kim, S. J. Jung, S. Hong, S. Kim, J. Phys. Chem. C 2007, 111, 15013–15019.