Nanoscopy with Focused Light (Nobel Lecture)†
Corresponding Author
Prof. Dr. Stefan W. Hell
Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen (Germany)
German Cancer Research Center (DKFZ), Optical Nanoscopy Division, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen (Germany)Search for more papers by this authorCorresponding Author
Prof. Dr. Stefan W. Hell
Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen (Germany)
German Cancer Research Center (DKFZ), Optical Nanoscopy Division, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen (Germany)Search for more papers by this authorCopyright© The Nobel Foundation 2014. We thank the Nobel Foundation, Stockholm, for permission to print this lecture. Nobel Lecture, December 8, 2014 (Stockholm University), with an addition from the lecture on December 13, 2014 (Uppsala University).
Graphical Abstract
A picture is worth a thousand words—This doesn't only apply to everyday life but also to the natural sciences. It is, therefore, probably not by chance that the historical beginning of modern natural sciences very much coincides with the invention of light microscopy. S. W. Hell shows in his Nobel Lecture that the diffraction resolution barrier has been overcome by using molecular state transitions (e.g. on/off) to make nearby molecules transiently discernible.
References
- 1“Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung”: E. Abbe, Arch. Mikrosk. Anat. 1873, 9, 413–468.
10.1007/BF02956173 Google Scholar
- 2E. Verdet, Leçons d’optique physique, Vol. 1, Victor Masson et fils, Paris, 1869.
- 3“On the Theory of Optical Images, with Special Reference to the Microscope”: Lord Rayleigh, Philos. Mag. 1896, 42, 167–195.
10.1080/14786449608620902 Google Scholar
- 4“Die theoretische Grenze für die Leistungsfähigkeit der Mikroskope”: H. von Helmholtz, Ann. Phys. Chem. 1874, 557–584 (Jubelband, J. C. Poggendorff gewidmet).
- 5B. Alberts, et al., Molecular Biology of the Cell, 4th ed., Garland Science, New York, 2002.
- 6“The Fluorescent Toolbox for Assessing Protein Location and Function”: B. N. G. Giepmans, et al., Science 2006, 312, 217–224.
- 7J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, New York, 2006.
- 8“Optical-detection and spectroscopy of single molecules in a solid”: W. E. Moerner, L. Kador, Phys. Rev. Lett. 1989, 62, 2535–2538.
- 9“Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal”: M. Orrit, J. Bernard, Phys. Rev. Lett. 1990, 65, 2716–2719.
- 10M. Born, E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge, 2002.
- 11“Properties of a 4pi confocal fluorescence microscope”: S. Hell, E. H. K. Stelzer, Opt. Soc. Am. J. A 1992, 9, 2159–2166.
- 12“Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range”: S. W. Hell, M. Schrader, H. T. M. Voort, J. Microsc. 1997, 187, 1–7.
- 13“Improvement of lateral resolution in far-field light microscopy using two-photon excitation with offset beams”: S. W. Hell, Opt. Commun. 1994, 106, 19–24.
- 14R. Loudon, The Quantum Theory of Light, Oxford University Press, Oxford, 1983.
- 15“Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy”: S. W. Hell, J. Wichmann, Opt. Lett. 1994, 19, 780–782.
- 16“Subdiffraction resolution in far-field fluorescence microscopy”: T. A. Klar, S. W. Hell, Opt. Lett. 1999, 24, 954–956.
- 17“Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission”: T. A. Klar, et al., Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210.
- 18“Macromolecular-scale resolution in biological fluorescence microscopy”: G. Donnert, et al., Proc. Natl. Acad. Sci. USA 2006, 103, 11440–11445.
- 19“STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis”: K. I. Willig, et al., Nature 2006, 440, 935–939.
- 20“Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement”: V. Westphal, et al., Science 2008, 320, 246–249.
- 21“Nanoscopy in a living mouse brain”: S. Berning, et al., Science 2012, 335, 551.
- 22“Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution”: M. Dyba, S. W. Hell, Phys. Rev. Lett. 2002, 88, 163901.
- 23“Nanoscale Resolution in the Focal Plane of an Optical Microscope”: V. Westphal, S. W. Hell, Phys. Rev. Lett. 2005, 94, 143903.
- 24“Efficient fluorescence inhibition patterns for RESOLFT microscopy”: J. Keller, A. Schoenle, S. W. Hell, Opt. Express 2007, 15, 3361–3371.
- 25“Coaligned Dual-Channel STED Nanoscopy and Molecular Diffusion Analysis at 20 nm Resolution”: F. Göttfert, et al., Biophys. J. 2013, 105, L01–L03.
- 26“Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy”: J. Chojnacki, et al., Science 2012, 338, 524–528.
- 27“Nanoscopy of Filamentous Actin in Cortical Dendrites of a Living Mouse”: K. I. Willig, et al., Biophys. J. 2014, 106, L01–L03.
- 28“Toward fluorescence nanoscopy”: S. W. Hell, Nat. Biotechnol. 2003, 21, 1347–1355.
- 29“Strategy for far-field optical imaging and writing without diffraction limit”: S. W. Hell, Phys. Lett. A 2004, 326, 140–145.
- 30“Far-Field Optical Nanoscopy”: S. W. Hell, Science 2007, 316, 1153–1158.
- 31“Microscopy and its focal switch”: S. W. Hell, Nat. Methods 2009, 6, 24–32.
- 32S. W. Hell, Far-Field Optical Nanoscopy, in Single Molecule Spectroscopy in Chemistry, Physics and Biology (Eds.: ), Springer, Berlin, 2009, pp. 365–398.
- 33“STED microscopy reveals crystal colour centres with nanometric resolution”: E. Rittweger, et al., Nat. Photonics 2009, 3, 144–147.
- 34“Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Angström Emitter Localization”: D. Wildanger, et al., Adv. Mater. 2012, 24, 309–313.
- 35“Far-field fluorescence nanoscopy of diamond color centers by ground state depletion”: E. Rittweger, D. Wildanger, S. W. Hell, Europhys. Lett. 2009, 86, 14001.
- 36“Three-Dimensional Stimulated Emission Depletion Microscopy of Nitrogen-Vacancy Centers in Diamond Using Continuous-Wave Light”: K. Y. Han, et al., Nano Lett. 2009, 9, 3323–3329.
- 37“Defect center room-temperature quantum processors”: J. Wrachtrup, Proc. Natl. Acad. Sci. USA 2010, 107, 9479–9480.
- 38“Processing quantum information in diamond”: J. Wrachtrup, F. Jelezko, J. Phys. Condens. Matter 2006, 18, S 807–S824.
- 39“Nanoscale magnetic sensing with an individual electronic spin in diamond”: J. R. Maze, et al., Nature 2008, 455, 644–647.
- 40“Diffraction unlimited all-optical recording of electron spin resonances”: D. Wildanger, J. R. Maze, S. W. Hell, Phys. Rev. Lett. 2011, 107, 017601.
- 41“Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit”: S. W. Hell, M. Kroug, Appl. Phys. B 1995, 60, 495–497.
- 42“Breaking the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving”: S. Bretschneider, C. Eggeling, S. W. Hell, Phys. Rev. Lett. 2007, 98, 218103.
- 43“Fluorescence nanoscopy by ground-state depletion and single-molecule return”: J. Fölling, et al., Nat. Methods 2008, 5, 943–945.
- 44“Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins”: M. Hofmann, et al., Proc. Natl. Acad. Sci. USA 2005, 102, 17565–17569.
- 45“Diffraction-unlimited all-optical imaging and writing with a photochromic GFP”: T. Grotjohann, et al., Nature 2011, 478, 204–208.
- 46“Concepts for nanoscale resolution in fluorescence microscopy”: S. W. Hell, M. Dyba, S. Jakobs, Curr. Opin. Neurobiol. 2004, 14, 599–609.
- 47“Nanoscopy with more than 100,000 ′doughnuts′”: A. Chmyrov, et al., Nat. Methods 2013, 10, 737–740.
- 48“Imaging Intracellular Fluorescent Proteins at Nanometer Resolution”: E. Betzig, et al., Science 2006, 313, 1642–1645.
- 49“On/off blinking and switching behaviour of single molecules of green fluorescent protein”: R. M. Dickson, et al., Nature 1997, 388, 355–358.
- 50“Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)”: M. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793–795.
- 51“Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy”: S. T. Hess, T. P. K. Girirajan, M. D. Mason, Biophys. J. 2006, 91, 4258–4272.
- 52“Wide-field subdiffraction imaging by accumulated binding of diffusing probes”: A. Sharonov, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 2006, 103, 18911–18916.