One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation†
Dr. Xiaoguang Wang
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)
Search for more papers by this authorDr. Yury V. Kolen'ko
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)
Search for more papers by this authorDr. Xiao-Qing Bao
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)
Search for more papers by this authorProf. Dr. Kirill Kovnir
Department of Chemistry, University of California, Davis, Davis, CA 95616 (USA)
Search for more papers by this authorCorresponding Author
Dr. Lifeng Liu
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)Search for more papers by this authorDr. Xiaoguang Wang
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)
Search for more papers by this authorDr. Yury V. Kolen'ko
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)
Search for more papers by this authorDr. Xiao-Qing Bao
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)
Search for more papers by this authorProf. Dr. Kirill Kovnir
Department of Chemistry, University of California, Davis, Davis, CA 95616 (USA)
Search for more papers by this authorCorresponding Author
Dr. Lifeng Liu
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)Search for more papers by this authorX.G.W. and L.F.L. acknowledge financial support of Marie-Curie COFUND programme (NanoTrainforGrowth). L.F.L. acknowledges financial support of the FCT Investigator grant (No. IF/01595/2014). Y.V.K. thanks Dr. L. M. Salonen and Prof. P. P. Freitas for helpful discussions.
Graphical Abstract
Hydrogen generation on self-supported three-dimensional nickel phosphide nanosheet array cathodes is reported. The nanosheets have been fabricated by direct phosphorization of commercial nickel foams using phosphorus vapor and show superior electrocatalytic activity and stability in acidic medium toward H2 generation.
Abstract
Nickel phosphide is an emerging low-cost, earth-abundant catalyst that can efficiently reduce water to generate hydrogen. However, the synthesis of nickel phosphide catalysts usually involves multiple steps and is laborious. Herein, a convenient and straightforward approach to the synthesis of a three-dimensional (3D) self-supported biphasic Ni5P4-Ni2P nanosheet (NS) array cathode is presented, which is obtained by direct phosphorization of commercially available nickel foam using phosphorus vapor. The synthesized 3D Ni5P4-Ni2P-NS array cathode exhibits outstanding electrocatalytic activity and long-term durability toward the hydrogen evolution reaction (HER) in acidic medium. The fabrication procedure reported here is scalable, showing substantial promise for use in water electrolysis. More importantly, the approach can be readily extended to synthesize other self-supported transition metal phosphide HER cathodes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201502577_sm_miscellaneous_information.pdf2.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446–6473;
- 1bD. Merki, X. L. Hu, Energy Environ. Sci. 2011, 4, 3878–3888.
- 2L. Birry, A. Lasia, J. Appl. Electrochem. 2004, 34, 735–749.
- 3
- 3aT. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100–102;
- 3bY. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, H. J. Dai, J. Am. Chem. Soc. 2011, 133, 7296–7299;
- 3cJ. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807–5813;
- 3dT. Y. Wang, L. Liu, Z. W. Zhu, P. Papakonstantinou, J. B. Hu, M. Li, Energy Environ. Sci. 2013, 6, 625–633;
- 3eD. Z. Wang, Z. Pan, Z. Z. Wu, Z. P. Wang, Z. H. Liu, J. Power Sources 2014, 264, 229–234;
- 3fT. Y. Chen, Y. H. Chang, C. L. Hsu, K. H. Wei, C. Y. Chiang, L. J. Li, Int. J. Hydrogen Energy 2013, 38, 12302–12309;
- 3gL. Liao, S. N. Wang, J. J. Xiao, X. J. Bian, Y. H. Zhang, M. D. Scanlon, X. L. Hu, Y. Tang, B. H. Liu, H. H. Girault, Energy Environ. Sci. 2014, 7, 387–392.
- 4
- 4aD. Merki, S. Fierro, H. Vrubel, X. L. Hu, Chem. Sci. 2011, 2, 1262–1267;
- 4bA. B. Laursen, P. C. K. Vesborg, I. Chorkendorff, Chem. Commun. 2013, 49, 4965–4967.
- 5C. Wan, Y. N. Regmi, B. M. Leonard, Angew. Chem. Int. Ed. 2014, 53, 6407–6410; Angew. Chem. 2014, 126, 6525–6528.
- 6D. Voiry, H. Yamaguchi, J. W. Li, R. Silva, D. C. B. Alves, T. Fujita, M. W. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850–855.
- 7F. Harnisch, G. Sievers, U. Schröder, Appl. Catal. B 2009, 89, 455–458.
- 8
- 8aE. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267–9270;
- 8bL. G. Feng, H. Vrubel, M. Bensimon, X. L. Hu, Phys. Chem. Chem. Phys. 2014, 16, 5917–5921;
- 8cZ. P. Huang, Z. B. Chen, Z. Z. Chen, C. C. Lv, H. Meng, C. Zhang, ACS Nano 2014, 8, 8121–8129;
- 8dZ. H. Pu, Q. Liu, C. Tang, A. M. Asiri, X. P. Sun, Nanoscale 2014, 6, 11031–11034;
- 8eA. R. J. Kucernak, V. N. N. Sundaram, J. Mater. Chem. A 2014, 2, 17435–17445;
- 8fA. L. Lu, Y. Z. Chen, H. Y. Li, A. Dowd, M. B. Cortie, Q. S. Xie, H. Z. Guo, Q. Q. Qi, D. L. Peng, Int. J. Hydrogen Energy 2014, 39, 18919–18928;
- 8gP. Jiang, Q. Liu, X. P. Sun, Nanoscale 2014, 6, 13440–13445;
- 8hY. Pan, Y. R. Liu, J. C. Zhao, K. Yang, J. L. Liang, D. D. Liu, W. H. Hu, D. P. Liu, Y. Q. Liu, C. G. Liu, J. Mater. Chem. A 2015, 3, 1656–1665;
- 8iY. J. Bai, H. J. Zhang, X. Li, L. Liu, H. T. Xu, H. J. Qiu, Y. Wang, Nanoscale 2015, 7, 1446–1453;
- 8jX. G. Wang, Y. V. Kolen’ko, L. F. Liu, Chem. Commun. 2015, 51, 6738–6741.
- 9
- 9aE. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Angew. Chem. Int. Ed. 2014, 53, 5427–5430; Angew. Chem. 2014, 126, 5531–5534;
- 9bJ. Q. Tian, Q. Liu, A. M. Asiri, X. P. Sun, J. Am. Chem. Soc. 2014, 136, 7587–7590;
- 9cZ. H. Pu, Q. Liu, P. Jiang, A. M. Asiri, A. Y. Obaid, X. P. Sun, Chem. Mater. 2014, 26, 4326–4329;
- 9dH. F. Du, Q. Liu, N. Y. Cheng, A. M. Asiri, X. P. Sun, C. M. Li, J. Mater. Chem. A 2014, 2, 14812–14816;
- 9eZ. P. Huang, Z. Z. Chen, Z. B. Chen, C. C. Lv, M. G. Humphrey, C. Zhang, Nano Energy 2014, 9, 373–382;
- 9fQ. Liu, J. Q. Tian, W. Cui, P. Jiang, N. Y. Cheng, A. M. Asiri, X. P. Sun, Angew. Chem. Int. Ed. 2014, 53, 6710–6714; Angew. Chem. 2014, 126, 6828–6832.
- 10
- 10aP. Jiang, Q. Liu, Y. H. Liang, J. Q. Tian, A. M. Asiri, X. P. Sun, Angew. Chem. Int. Ed. 2014, 53, 12855–12859; Angew. Chem. 2014, 126, 13069–13073;
- 10bJ. F. Callejas, J. M. McEnaney, C. G. Read, J. C. Crompton, A. J. Biacchi, E. J. Popczun, T. R. Gordon, N. S. Lewis, R. E. Schaak, ACS Nano 2014, 8, 11101–11107;
- 10cZ. P. Huang, C. C. Lv, Z. Z. Chen, Z. B. Chen, F. Tian, C. Zhang, Nano Energy 2015, 12, 666–674;
- 10dY. Xu, R. Wu, J. F. Zhang, Y. M. Shi, B. Zhang, Chem. Commun. 2013, 49, 6656–6658.
- 11
- 11aP. Xiao, M. A. Sk, L. Thia, X. M. Ge, R. J. Lim, J. Y. Wang, K. H. Lim, X. Wang, Energy Environ. Sci. 2014, 7, 2624–2629;
- 11bZ. C. Xing, Q. Liu, A. M. Asiri, X. P. Sun, Adv. Mater. 2014, 26, 5702–5707;
- 11cJ. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, A. J. Biacchi, N. S. Lewis, R. E. Schaak, Chem. Mater. 2014, 26, 4826–4831.
- 12
- 12aJ. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, C. G. Read, N. S. Lewis, R. E. Schaak, Chem. Commun. 2014, 50, 11026–11028;
- 12bZ. C. Xing, Q. Liu, A. M. Asiri, X. P. Sun, ACS Catal. 2015, 5, 145–149.
- 13J. Q. Tian, Q. Liu, N. Y. Cheng, A. M. Asiri, X. P. Sun, Angew. Chem. Int. Ed. 2014, 53, 9577–9581; Angew. Chem. 2014, 126, 9731–9735.
- 14
- 14aH. G. von Schnering, W. Hoenle, Chem. Rev. 1988, 88, 243–273;
- 14bM. M. Shatruk, K. Kovnir, A. V. Shevelkov, B. A. Popovkin, Angew. Chem. Int. Ed. 2000, 39, 2508–2509;
10.1002/1521-3773(20000717)39:14<2508::AID-ANIE2508>3.0.CO;2-O CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 2561–2562.
- 15M. Elfström, Acta Chem. Scand. 1965, 19, 1694–1704.
- 16
- 16aM. G. Kanatzidis, R. Pottgen, W. Jeitschko, Angew. Chem. Int. Ed. 2005, 44, 6996–7023; Angew. Chem. 2005, 117, 7156–7184;
- 16bY. Xie, H. L. Su, X. F. Qian, X. M. Liu, Y. T. Qian, J. Solid State Chem. 2000, 149, 88–91;
- 16cK. A. Kovnir, Y. V. Kolen’ko, S. Ray, J. W. Li, T. Watanabe, M. Itoh, M. Yoshimura, A. V. Shevelkov, J. Solid State Chem. 2006, 179, 3756–3762;
- 16dK. Kovnir, Y. V. Kolen’ko, A. I. Baranov, I. S. Neira, A. V. Sobolev, M. Yoshimura, I. A. Presniakov, A. V. Shevelkov, J. Solid State Chem. 2009, 182, 630–639.
- 17aN. S. Alhajri, D. H. Anjum, K. Takanabe, J. Mater. Chem. A 2014, 2, 10548–10556;
- 17bH. Tang, K. Dou, C. C. Kaun, Q. Kuang, S. Yang, J. Mater. Chem. A 2014, 2, 360–364.
- 18H. Vrubel, T. Moehl, M. Grätzel, X. L. Hu, Chem. Commun. 2013, 49, 8985–8987.