Cage-Like B41+ and B422+: New Chiral Members of the Borospherene Family†
Qiang Chen
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Institute of Materials Science and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000 (China)
Search for more papers by this authorSu-Yan Zhang
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorHui Bai
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorWen-Juan Tian
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorTing Gao
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorHai-Ru Li
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorChang-Qing Miao
Institute of Materials Science and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000 (China)
Search for more papers by this authorDr. Yue-Wen Mu
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorCorresponding Author
Hai-Gang Lu
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)Search for more papers by this authorCorresponding Author
Prof. Dr. Hua-Jin Zhai
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)Search for more papers by this authorCorresponding Author
Prof. Dr. Si-Dian Li
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)Search for more papers by this authorQiang Chen
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Institute of Materials Science and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000 (China)
Search for more papers by this authorSu-Yan Zhang
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorHui Bai
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorWen-Juan Tian
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorTing Gao
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorHai-Ru Li
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorChang-Qing Miao
Institute of Materials Science and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000 (China)
Search for more papers by this authorDr. Yue-Wen Mu
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Search for more papers by this authorCorresponding Author
Hai-Gang Lu
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)Search for more papers by this authorCorresponding Author
Prof. Dr. Hua-Jin Zhai
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)Search for more papers by this authorCorresponding Author
Prof. Dr. Si-Dian Li
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China)Search for more papers by this authorThis work was supported by the National Natural Science Foundation of China (21243004, 21373130), the Shanxi International Cooperation project (2013081018), and the State Key Laboratory of Quantum Optics and Quantum Optics Devices (KF201402). H.J.Z. gratefully acknowledges the start-up fund from Shanxi University for support.
Graphical Abstract
Chiral cations: Following the recently observed C3/C2 B39− and D2d B40, two new chiral members C1 B41+ and C2 B422+ are introduced to the borospherene family. These chiral borospherene cations are composed of twelve interwoven boron double chains with six hexagonal and heptagonal faces and exhibit σ plus π double delocalization, which can be viewed as cuborenes analogous to cubane (C8H8).
Abstract
The newly discovered borospherenes B40−/0 and B39− mark the onset of a new class of boron nanostructures. Based on extensive first-principles calculations, we introduce herein two new chiral members to the borospherene family: the cage-like C1 B41+ (1) and C2 B422+ (2), both of which are the global minima of the systems with degenerate enantiomers. These chiral borospherene cations are composed of twelve interwoven boron double chains with six hexagonal and heptagonal faces and may be viewed as the cuborenes analogous to cubane (C8H8). Chemical bonding analyses show that there exists a three-center two-electron σ bond on each B3 triangle and twelve multicenter two-electron π bonds over the σ skeleton. Molecular dynamics simulations indicate that C1 B41+ (1) fluctuates above 300 K, whereas C2 B422+ (2) remains dynamically stable. The infrared and Raman spectra of these borospherene cations are predicted to facilitate their experimental characterizations.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201501588_sm_miscellaneous_information.pdf1.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. W. Kroto, J. R. Heath, S. C. O′Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162–163.
- 2M. Monthioux, V. L. Kuznetsov, Carbon 2006, 44, 1621–1623.
- 3K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
- 4S. Bulusu, X. Li, L. S. Wang, X. C. Zeng, Proc. Natl. Acad. Sci. USA 2006, 103, 8326–8330.
- 5L. F. Cui, X. Huang, L. M. Wang, D. Y. Zubarev, A. I. Boldyrev, J. Li, L. S. Wang, J. Am. Chem. Soc. 2006, 128, 8390–8391.
- 6L. F. Cui, X. Huang, L. M. Wang, J. Li, L. S. Wang, J. Phys. Chem. A 2006, 110, 10169–10172.
- 7N. G. Szwacki, A. Sadrzadeh, B. I. Yakobson, Phys. Rev. Lett. 2007, 98, 166804.
- 8F. Y. Li, P. Jin, D. E. Jiang, L. Wang, S. B. Zhang, J. J. Zhao, Z. F. Chen, J. Chem. Phys. 2012, 136, 074302.
- 9S. Goedecker, W. Hellmann, T. Lenosky, Phys. Rev. Lett. 2005, 95, 055501.
- 10H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, L. S. Wang, Angew. Chem. Int. Ed. 2003, 42, 6004–6008; Angew. Chem. 2003, 115, 6186–6190.
- 11H. J. Zhai, B. Kiran, J. Li, L. S. Wang, Nat. Mater. 2003, 2, 827–833.
- 12B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, L. S. Wang, Proc. Natl. Acad. Sci. USA 2005, 102, 961–964.
- 13A. P. Sergeeva, Z. A. Piazza, C. Romanescu, W. L. Li, A. I. Boldyrev, L. S. Wang, J. Am. Chem. Soc. 2012, 134, 18065–18073.
- 14W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, A. I. Boldyrev, Nat. Chem. 2010, 2, 202–206.
- 15I. A. Popov, Z. A. Piazza, W. L. Li, L. S. Wang, A. I. Boldyrev, J. Chem. Phys. 2013, 139, 144307.
- 16E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, R. Ahlrichs, Angew. Chem. Int. Ed. 2007, 46, 8503–8506; Angew. Chem. 2007, 119, 8656–8659.
- 17W. L. Li, Y. F. Zhao, H. S. Hu, J. Li, L. S. Wang, Angew. Chem. Int. Ed. 2014, 53, 5540–5545; Angew. Chem. 2014, 126, 5646–5651.
- 18Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, L. S. Wang, Nat. Commun. 2014, 5, 3113.
- 19A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, A. I. Boldyrev, Acc. Chem. Res. 2014, 47, 1349–1358.
- 20W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, L. S. Wang, J. Am. Chem. Soc. 2014, 136, 12257–12260.
- 21Q. Chen, G. F. Wei, W. J. Tian, H. Bai, Z. P. Liu, H. J. Zhai, S. D. Li, Phys. Chem. Chem. Phys. 2014, 16, 18282–18287.
- 22W. L. Li, C. Romanescu, T. Jian, L. S. Wang, J. Am. Chem. Soc. 2012, 134, 13228–13231.
- 23D. Z. Li, Q. Chen, Y. B. Wu, H. G. Lu, S. D. Li, Phys. Chem. Chem. Phys. 2012, 14, 14769–14774.
- 24I. Boustani, ChemPhysChem 2005, 6, 2001–2008.
- 25H. Tang, S. Ismail-Beigi, Phys. Rev. Lett. 2007, 99, 115501.
- 26X. B. Yang, Y. Ding, J. Ni, Phys. Rev. B 2008, 77, 041402.
- 27H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, L. S. Wang, Nat. Chem. 2014, 6, 727–731.
- 28Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li, L. S Wang, ACS Nano 2015, 9, 754–760.
- 29H. Bai, Q. Chen, H. J. Zhai, S. D. Li, Angew. Chem. Int. Ed. 2015, 54, 941–945; Angew. Chem. 2015, 127, 955–959.
- 30R. X. He, X. C. Zeng, Chem. Commun. 2015, 51, 3185–3188.
- 31P. Jin, Q. H. Hou, C. C. Tang, Z. F. Chen, Theor. Chem. Acc. 2015, 134, 13–22.
- 32S. Goedecker, J. Chem. Phys. 2004, 120, 9911–9917.
- 33C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.
- 34T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51–57.
- 35R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650–654.
- 36Gaussian 09, Revision A.2, M. J. Frisch, et al., Gaussian Inc., Wallingford, CT, 2009.
- 37J. Čížek, Adv. Chem. Phys. 1969, 14, 35–89.
- 38G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910–1918.
- 39K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479–483.
- 40H. J. Werner, et al. MOLPRO, version 2012.1.
- 41D. Yu. Zubarev, A. I. Boldyrev, Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.
- 42P. v. R. Schleyer, C. Maerker, J. Am. Chem. Soc. 1996, 118, 6317–6318.
- 43J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103–108.
- 44G. J. Wang, J. M. Cui, C. X. Chi, X. J. Zhou, Z. H. Li, X. P. Xing, M. F. Zhou, Chem. Sci. 2012, 3, 3272–3279.
- 45G. J. Wang, M. F. Zhou, J. T. Goettel, G. J. Schrobilgen, J. Su, J. Li, T. Schloder, S. Riedel, Nature 2014, 514, 475–477.
- 46D. Ciuparu, R. F. Klie, Y. M. Zhu, L. Pfefferle, J. Phys. Chem. B 2004, 108, 3967–3969.
- 47L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman, R. Schneider, J. Chem. Phys. 2008, 129, 014109.
- 48S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703–1710.
- 49J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 50U. Varetto, Molekel 5.4.0.8, Swiss National Supercomputing Centre, Manno, Switzerland, 2009.