A 36-Fold Multiple Unit Cell and Switchable Anisotropic Dielectric Responses in an Ammonium Magnesium Formate Framework†
Ran Shang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
Search for more papers by this authorCorresponding Author
Prof. Zhe-Ming Wang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)Search for more papers by this authorCorresponding Author
Prof. Song Gao
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)Search for more papers by this authorRan Shang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
Search for more papers by this authorCorresponding Author
Prof. Zhe-Ming Wang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)Search for more papers by this authorCorresponding Author
Prof. Song Gao
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)Search for more papers by this authorThis work was supported by the NSFC (Grants 21171010, 21290170, 21290171, and 21321001), the National Basic Research Program of China (Grant 2013CB933401).
Graphical Abstract
Multiply the unit cell: An ammonium Mg formate framework has a rare three-dimensional binodal framework with long cavities accommodating 1,3-propanediammonium and water. The framework displays a phase transition at 275 K to give a 36-fold multiple unit cell and anisotropic switchable dielectric responses.
Abstract
An ammonium Mg formate framework, prepared by using di-protonated 1,3-propanediamine (pnH22+), has a rare three-dimensional binodal (412⋅63)(49⋅66)3 Mg-formate framework with elongated cavities accommodating pnH22+⋅⋅⋅H2O⋅⋅⋅pnH22+ assemblies. It displays a para-electric to antiferroelectric phase transition at 275 K, with a 36-fold multiple unit cell from the high-temperature cell of 1703 Å3 to the low-temperature one of 60 980 Å3. The change results from the disorder–order transition of the pnH22+ cations and H2O molecules. The motions of these components freeze in a stepwise fashion on going from the high-temperature disorder state to the low-temperature ordered state, triggering the switch from high to low dielectric constants, and the spatial limitation of such motions contributes the strong dielectric anisotropy.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201411005_sm_miscellaneous_information.pdf3.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aI. E. Collings, A. B. Cairns, A. L. Thompson, J. E. Parker, C. C. Tang, M. G. Tucker, J. Catafesta, C. Levelut, J. Haines, V. Dmitriev, P. Pattison, A. L. Goodwin, J. Am. Chem. Soc. 2013, 135, 7610–7620;
- 1bT. D. Bennett, J. C. Tan, S. A. Moggach, R. Galvelis, C. Mellot-Draznieks, B. A. Reisner, A. Thirumurugan, D. R. Allan, A. K. Cheetham, Chem. Eur. J. 2010, 16, 10684–10690;
- 1cS. A. Moggach, T. D. Bennett, A. K. Cheetham, Angew. Chem. Int. Ed. 2009, 48, 7087–7089; Angew. Chem. 2009, 121, 7221–7223;
- 1dE. C. Spencer, R. J. Angel, N. L. Ross, B. E. Hanson, J. A. K. Howard, J. Am. Chem. Soc. 2009, 131, 4022–4026;
- 1eT. D. Bennett, A. L. Goodwin, M. T. Dove, D. A. Keen, M. G. Tucker, E. R. Barney, A. K. Soper, E. G. Bithell, J.-C. Tan, A. K. Cheetham, Phys. Rev. Lett. 2010, 104, 115503.
- 2W. Zhang, R.-G. Xiong, Chem. Rev. 2012, 112, 1163–1195.
- 3aW. Zhang, Y. Cai, R. G. Xiong, H. Yoshikawa, K. Awaga, Angew. Chem. Int. Ed. 2010, 49, 6608–6610; Angew. Chem. 2010, 122, 6758–6760;
- 3bW. Zhang, H.-Y. Ye, R. Graf, H. W. Spiess, Y.-F. Yao, R.-Q. Zhu, R.-G. Xiong, J. Am. Chem. Soc. 2013, 135, 5230–5233;
- 3cZ.-Y. Du, T.-T. Xu, B. Huang, Y.-J. Su, W. Xue, C.-T. He, W.-X. Zhang, X.-M. Chen, Angew. Chem. Int. Ed. 2014, DOI: ; Angew. Chem. 2014, DOI: ;
- 3dS. Devautour-Vinot, G. Maurin, C. Serre, P. Horcajada, D. P. da Cunha, V. Guillerm, E. de Souza Costa, F. Taulelle, C. Martineau, Chem. Mater. 2012, 24, 2168–2177;
- 3eP. Sippel, D. Denysenko, A. Loidl, P. Lunkenheimer, G. Sastre, D. Volkmer, Adv. Funct. Mater. 2014, 24, 3885–3896.
- 4A. B. Cairns, A. L. Goodwin, Chem. Soc. Rev. 2013, 42, 4881–4893.
- 5
- 5aE. Pardo, C. Train, H. Liu, L. M. Chamoreau, B. Dkhil, K. Boubekeur, F. Lloret, K. Nakatani, H. Tokoro, S. i. Ohkoshi, M. Verdaguer, Angew. Chem. Int. Ed. 2012, 51, 8356–8360; Angew. Chem. 2012, 124, 8481–8485;
- 5bS. i. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, K. Hashimoto, Angew. Chem. Int. Ed. 2007, 46, 3238–3241; Angew. Chem. 2007, 119, 3302–3305;
- 5cH. B. Cui, Z. M. Wang, K. Takahashi, Y. Okano, H. Kobayashi, A. Kobayashi, J. Am. Chem. Soc. 2006, 128, 15074–15075.
- 6
- 6aR. Shang, S. Chen, Z. M. Wang, S. Gao in Metal-Organic Framework Materials (Eds.: L. R. Macgillivray, C. M. Lukehart), John Wiley & Sons, Ltd: Chichester, UK, 2014, DOI: ;
- 6bZ. M. Wang, K. L. Hu, S. Gao, H. Kobayashi, Adv. Mater. 2010, 22, 1526–1533.
- 7
- 7aE. C. Spencer, M. S. R. N. Kiran, W. Li, U. Ramamurty, N. L. Ross, A. K. Cheetham, Angew. Chem. Int. Ed. 2014, 53, 5583–5586; Angew. Chem. 2014, 126, 5689–5692;
- 7bW. Li, A. Thirumurugan, P. T. Barton, Z. Lin, S. Henke, H. H.-M. Yeung, M. T. Wharmby, E. G. Bithell, C. J. Howard, A. K. Cheetham, J. Am. Chem. Soc. 2014, 136, 7801–7804;
- 7cW. Li, M. R. Probert, M. Kosa, T. D. Bennett, A. Thirumurugan, R. P. Burwood, M. Parinello, J. A. K. Howard, A. K. Cheetham, J. Am. Chem. Soc. 2012, 134, 11940–11943.
- 8B. Zhou, Y. Imai, A. Kobayashi, Z.-M. Wang, H. Kobayashi, Angew. Chem. Int. Ed. 2011, 50, 11441–11445; Angew. Chem. 2011, 123, 11643–11647.
- 9
- 9aD.-W. Fu, W. Zhang, H.-L. Cai, Y. Zhang, J.-Z. Ge, R.-G. Xiong, S. D. Huang, T. Nakamura, Angew. Chem. Int. Ed. 2011, 50, 11947–11951; Angew. Chem. 2011, 123, 12153–12157;
- 9bP. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby, N. S. Dalal, H. W. Kroto, A. K. Cheetham, J. Am. Chem. Soc. 2009, 131, 13625–13627;
- 9cM. Sánchez-Andújar, S. Presedo, S. Yáñez-Vilar, S. Castro-García, J. Shamir, M. A. Señarís-Rodríguez, Inorg. Chem. 2010, 49, 1510–1516.
- 10
- 10aG.-C. Xu, W. Zhang, X.-M. Ma, Y.-H. Chen, L. Zhang, H.-L. Cai, Z.-M. Wang, R.-G. Xiong, S. Gao, J. Am. Chem. Soc. 2011, 133, 14948–14951;
- 10bG.-C. Xu, X.-M. Ma, L. Zhang, Z.-M. Wang, S. Gao, J. Am. Chem. Soc. 2010, 132, 9588–9590.
- 11
- 11aR. Shang, S. Chen, K. L. Hu, Z. C. Jiang, B. W. Wang, M. Kurmoo, Z. M. Wang, S. Gao, APL Mater. 2014, 2, 124104;
- 11bR. Shang, S. Chen, Z. M. Wang, S. Gao, Chem. Eur. J. 2014, 20, 15872–15883;
- 11cR. Shang, G. C. Xu, Z. M. Wang, S. Gao, Chem. Eur. J. 2014, 20, 1146–1158;
- 11dS. Chen, R. Shang, K. L. Hu, Z. M. Wang, S. Gao, Inorg. Chem. Front. 2014, 1, 83–98.
- 12L. Cañadillas-Delgado, O. Fabelo, J. A. Rodríguez-Velamazán, M. Lemée-Cailleau, S. A. Mason, E. Pardo, F. Lloret, J. Zhao, X. Bu, V. Simonet, C. V. Colin, J. Rodríguez-Carvajal, J. Am. Chem. Soc. 2012, 134, 19772–19781.
- 13
- 13aM. Y. Li, B. Liu, B. W. Wang, Z. M. Wang, S. Gao, M. Kurmoo, Dalton Trans. 2011, 40, 6038–6046;
- 13bM.-Y. Li, M. Kurmoo, Z. M. Wang, S. Gao, Chem. Asian J. 2011, 6, 3084–3096.
- 14
- 14aM. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 1977;
- 14bW. Känzig, Ferroelectrics and Antiferroelectrics, Academic Press, New York and London, 1957.
10.1016/S0081-1947(08)60154-X Google Scholar
- 15S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460–1494;
10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 1558–1595.10.1002/(SICI)1521-3757(19980605)110:11<1558::AID-ANGE1558>3.0.CO;2-7 Web of Science® Google Scholar
- 16
- 16aA. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London, 1983;
- 16bG. G. Raju, Dielectrics in Electric Fields, Marcel Dekker, New York, 2003.
10.1201/9780203912270 Google Scholar