Orthogonal Insertion of Lanthanide and Transition-Metal Atoms in Metal–Organic Networks on Surfaces†
José I. Urgel
Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Search for more papers by this authorCorresponding Author
Dr. David Ecija
Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
IMDEA Nanoscience, 28049 Madrid (Spain)
David Ecija, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Willi Auwärter, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Davide Bonifazi, Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Search for more papers by this authorCorresponding Author
Dr. Willi Auwärter
Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
David Ecija, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Willi Auwärter, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Davide Bonifazi, Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Search for more papers by this authorDaphné Stassen
Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Search for more papers by this authorCorresponding Author
Prof. Dr. Davide Bonifazi
Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Department of Pharmaceutical and Chemical Sciences and INSTM UdR Trieste, University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy)
David Ecija, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Willi Auwärter, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Davide Bonifazi, Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Search for more papers by this authorProf. Dr. Johannes V. Barth
Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Search for more papers by this authorJosé I. Urgel
Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Search for more papers by this authorCorresponding Author
Dr. David Ecija
Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
IMDEA Nanoscience, 28049 Madrid (Spain)
David Ecija, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Willi Auwärter, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Davide Bonifazi, Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Search for more papers by this authorCorresponding Author
Dr. Willi Auwärter
Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
David Ecija, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Willi Auwärter, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Davide Bonifazi, Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Search for more papers by this authorDaphné Stassen
Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Search for more papers by this authorCorresponding Author
Prof. Dr. Davide Bonifazi
Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Department of Pharmaceutical and Chemical Sciences and INSTM UdR Trieste, University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy)
David Ecija, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Willi Auwärter, Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Davide Bonifazi, Namur Research College (NARC) and Department of Chemistry University of Namur (UNamur), Rue de Bruxelles 61, Namur 5000 (Belgium)
Search for more papers by this authorProf. Dr. Johannes V. Barth
Physik Department E20, Technische Universität München, 85748 Garching, München (Germany)
Search for more papers by this authorWe thank Felix Bischoff and Yuanqin He for fruitful discussions. This work was supported by the European Research Council Advanced Grant “MolArt” (Grant 247299), the Munich Center for Advanced Photonics (MAP), and the Technische Universität München-Institute for Advanced Study. D.B. gratefully acknowledges the EU through the ERC Starting Grant “COLORLANDS” project, the FRS-FNRS (FRFC contracts no. 2.4.550.09), the “TINTIN” ARC project (09/14-023), and the MIUR through the FIRB “Futuro in Ricerca” (“SUPRACARBON”, contract no. RBFR10DAK6). D.S. thanks the FNRS for her doctoral fellowship. D.E. acknowledges funding through the RyC-2012-11133 Grant.
Graphical Abstract
Surface-confined d–f bimetallic 2D coordination nanosystems have been achieved by using a three-step procedure that exploits orthogonal coordination interactions of CN-functionalized free-base porphyrin linkers with rare-earth and transition-metal centers. By systematic STM investigations the assembly process was established and the resulting nanoarchitectures characterized at the molecular level.
Abstract
The orthogonal coordinative properties of tetrapyrrole macrocycles and nitrile ligands have been used in a multistep procedure towards interfacial d-f hetero-bimetallic nanoarchitectures based on a free-base porphyrin derivative functionalized with meso-cyanobiphenylene substituents. Molecular-level scanning tunneling microscopy studies reveal that the porphyrin module alone self-assembles on Ag(111) in a close-packed layer with a square unit cell. Upon co-deposition of Gd atoms, a square-planar motif is formed that reflects the fourfold coordination of CN ligands to the rare-earth centers. The resulting nanoporous network morphology is retained following exposure to a beam of Co atoms, which induces selective porphyrin metalation and ultimately yields a gridlike 2D metallosupramolecular architecture.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201410802_sm_miscellaneous_information.pdf785.1 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430.
- 2N. Lin, S. Stepanow, M. Ruben, J. V. Barth, Top. Curr. Chem. 2009, 287, 1–44; J. V. Barth, Surf. Sci. 2009, 603, 1533–1541.
- 3N. Lin, A. Dmitriev, J. Weckesser, J. V. Barth, K. Kern, Angew. Chem. Int. Ed. 2002, 41, 4779–4783; Angew. Chem. 2002, 114, 4973–4977; P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2002, 124, 14000–14001.
- 4C. J. Villagómez, T. Sasaki, J. M. Tour, L. Grill, J. Am. Chem. Soc. 2010, 132, 16848–16854; A. Ciesielski, L. Piot, P. Samorì, A. Jouaiti, M. W. Hosseini, Adv. Mater. 2009, 21, 1131–1136; D. Heim, D. Ecija, K. Seufert, W. Auwärter, C. Aurisicchio, C. Fabbro, D. Bonifazi, J. V. Barth, J. Am. Chem. Soc. 2010, 132, 6783–6790.
- 5S. Clair, S. Pons, H. Brune, K. Kern, J. V. Barth, Angew. Chem. Int. Ed. 2005, 44, 7294–7297; Angew. Chem. 2005, 117, 7460–7463; A. Dmitriev, H. Spillmann, N. Lin, J. V. Barth, K. Kern, Angew. Chem. Int. Ed. 2003, 42, 2670–2673; Angew. Chem. 2003, 115, 2774–2777; D. Ecija, S. Vijayaraghavan, W. Auwärter, S. Joshi, K. Seufert, C. Aurisicchio, D. Bonifazi, J. V. Barth, ACS Nano 2012, 6, 4258–4265; S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. B. Deng, C. Z. Cai, J. V. Barth, K. Kern, Nat. Mater. 2004, 3, 229–233; M. E. Garah, A. Ciesielski, N. Marets, V. Bulach, M. W. Hosseini, P. Samori, Chem. Commun. 2014, 50, 12250–12253.
- 6Y. Li, J. Xiao, T. E. Shubina, M. Chen, Z. L. Shi, M. Schmid, H. P. Steinrück, J. M. Gottfried, N. Lin, J. Am. Chem. Soc. 2012, 134, 6401–6408; Z. L. Shi, N. Lin, J. Am. Chem. Soc. 2009, 131, 5376–5377.
- 7U. Schlickum, R. Decker, F. Klappenberger, G. Zoppellaro, S. Klyatskaya, M. Ruben, I. Silanes, A. Arnau, K. Kern, H. Brune, J. V. Barth, Nano Lett. 2007, 7, 3813–3817.
- 8D. P. Arnold, Synlett 2000, 296–305; A. K. Burrell, D. L. Officer, P. G. Plieger, D. C. W. Reid, Chem. Rev. 2001, 101, 2751–2796.
- 9H. L. Anderson, Chem. Commun. 1999, 2323–2330.
- 10S. Mohnani, D. Bonifazi, Coord. Chem. Rev. 2010, 254, 2342–2362; W. Auwärter, D. Ecija, F. Klappenberger, J. V. Barth, Nat. Chem. 2015, 7, 105–120.
- 11W. Hieringer, K. Flechtner, A. Kretschmann, K. Seufert, W. Auwärter, J. V. Barth, A. Gorling, H. P. Steinrück, J. M. Gottfried, J. Am. Chem. Soc. 2011, 133, 6206–6222; K. Seufert, W. Auwarter, J. V. Barth, J. Am. Chem. Soc. 2010, 132, 18141–18146.
- 12C. Wäckerlin, K. Tarafder, J. Girovsky, J. Nowakowski, T. Hahlen, A. Shchyrba, D. Siewert, A. Kleibert, F. Nolting, P. M. Oppeneer, T. A. Jung, N. Ballav, Angew. Chem. Int. Ed. 2013, 52, 4568–4571; Angew. Chem. 2013, 125, 4666–4669.
- 13B. Hulsken, R. van Hameren, J. W. Gerritsen, T. Khoury, P. Thordarson, M. J. Crossley, A. E. Rowan, R. J. M. Nolte, J. A. A. W. Elemans, S. Speller, Nat. Nanotechnol. 2007, 2, 285–289; F. Sedona, M. Di Marino, D. Forrer, A. Vittadini, M. Casarin, A. Cossaro, L. Floreano, A. Verdini, M. Sambi, Nat. Mater. 2012, 11, 970–977.
- 14M. D. Yilmaz, J. Huskens, Soft Matter 2012, 8, 11768–11780.
- 15C. E. Plečnik, S. M. Liu, S. G. Shore, Acc. Chem. Res. 2003, 36, 499–508; F. F. Chen, Z. Q. Chen, Z. Q. Bian, C. H. Huang, Coord. Chem. Rev. 2010, 254, 991–1010.
- 16Y. G. Huang, F. L. Jiang, M. C. Hong, Coord. Chem. Rev. 2009, 253, 2814–2834.
- 17S. Tanase, J. Reedijk, Coord. Chem. Rev. 2006, 250, 2501–2510.
- 18J. K. M. Sanders, N. Bampos, Z. Clyde-Watson, S. L. Darling, J. C. Hawley, H.-J. Kim, C. C. Mak, S. J. Web, The Porphyrin Handbook, Vol. 3, Academic Press, San Diego, 1999.
- 19W. Auwärter, A. Weber-Bargioni, S. Brink, A. Riemann, A. Schiffrin, M. Ruben, J. V. Barth, ChemPhysChem 2007, 8, 250–254.
- 20J. M. Gottfried, K. Flechtner, A. Kretschmann, T. Lukasczyk, H. P. Steinrück, J. Am. Chem. Soc. 2006, 128, 5644–5645.
- 21C. H. Wong, S. C. Zimmerman, Chem. Commun. 2013, 49, 1679–1695.
- 22A. C. Papageorgiou, S. Fischer, S. C. Oh, O. Saglam, J. Reichert, A. Wiengarten, K. Seufert, S. Vijayaraghavan, D. Ecija, W. Auwärter, F. Allegretti, R. G. Acres, K. C. Prince, K. Diller, F. Klappenberger, J. V. Barth, ACS Nano 2013, 7, 4520–4526.
- 23F. Bischoff, K. Seufert, W. Auwärter, S. Joshi, S. Vijayaraghavan, D. Ecija, K. Diller, A. C. Papageorgiou, S. Fischer, F. Allegretti, D. A. Duncan, F. Klappenberger, F. Blobner, R. Y. Han, J. V. Barth, ACS Nano 2013, 7, 3139–3149; W. Auwärter, K. Seufert, F. Bischoff, D. Ecija, S. Vijayaraghavan, S. Joshi, F. Klappenberger, N. Samudrala, J. V. Barth, Nat. Nanotechnol. 2012, 7, 41–46.
- 24J. Reichert, M. Marschall, K. Seufert, D. Ecija, W. Auwärter, E. Arras, S. Klyatskaya, M. Ruben, J. V. Barth, J. Phys. Chem. C 2013, 117, 12858–12863; M. Marschall, J. Reichert, A. Weber-Bargioni, K. Seufert, W. Auwärter, S. Klyatskaya, G. Zoppellaro, M. Ruben, J. V. Barth, Nat. Chem. 2010, 2, 131–137.
- 25S. Vijayaraghavan, D. Ecija, W. Auwärter, S. Joshi, K. Seufert, M. Drach, D. Nieckarz, P. Szabelski, C. Aurisicchio, D. Bonifazi, J. V. Barth, Chem. Eur. J. 2013, 19, 14143–14150; E. Arras, A. P. Seitsonen, F. Klappenberger, J. V. Barth, Phys. Chem. Chem. Phys. 2012, 14, 15995–16001.
- 26D. Ecija, J. I. Urgel, A. C. Papageorgiou, S. Joshi, W. Auwärter, A. P. Seitsonen, S. Klyatskaya, M. Ruben, S. Fischer, S. Vijayaraghavan, J. Reichert, J. V. Barth, Proc. Natl. Acad. Sci. USA 2013, 110, 6678–6681.
- 27J. I. Urgel, D. Ecija, W. Auwärter, J. V. Barth, Nano Lett. 2014, 14, 1369–1373.
- 28J. Arnold, The Porphyrin Handbook, Vol. 3, Academic Press, San Diego, 1999.
- 29J. M. Shi, W. Xu, Q. Y. Liu, F. L. Liu, Z. L. Huang, H. Lei, W. T. Yu, Q. Fang, Chem. Commun. 2002, 756–757.
- 30R. Decker, U. Schlickum, F. Klappenberger, G. Zoppellaro, S. Klyatskaya, M. Ruben, J. V.Barth and H. Brune, Appl. Phys. Lett. 2008, 93, 243102.
- 31H. Marbach, H. P. Steinrück, Chem. Commun. 2014, 50, 9034–9048.