Molecular Recognition in Chemical and Biological Systems
Dipl.-Chem. Elke Persch
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
These authors contributed equally to this Review, their sequence was determined by the flip of a coin.
Search for more papers by this authorDipl.-Chem. Oliver Dumele
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
These authors contributed equally to this Review, their sequence was determined by the flip of a coin.
Search for more papers by this authorCorresponding Author
Prof. Dr. François Diederich
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)Search for more papers by this authorDipl.-Chem. Elke Persch
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
These authors contributed equally to this Review, their sequence was determined by the flip of a coin.
Search for more papers by this authorDipl.-Chem. Oliver Dumele
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
These authors contributed equally to this Review, their sequence was determined by the flip of a coin.
Search for more papers by this authorCorresponding Author
Prof. Dr. François Diederich
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)Search for more papers by this authorGraphical Abstract
Both are required: Chemical model systems and the study of biological receptors are both required to understand molecular recognition processes. The identification and quantification of noncovalent interactions and deciphering the role of water are key elements for structure-based drug design. Several case studies are presented in which weak intermolecular interactions were applied to innovative ligand design and optimization.
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201408487_sm_miscellaneous_information.pdf2.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1http://www.rcsb.org/pdb/statistics/holdings.do (April 15, 2014).
- 2http://www.ccdc.cam.ac.uk/Solutions/CSDSystem/Pages/CSD.aspx (April 22, 2014).
- 3K. A. Brameld, B. Kuhn, D. C. Reuter, M. Stahl, J. Chem. Inf. Model. 2008, 48, 1–24.
- 4C. Bissantz, B. Kuhn, M. Stahl, J. Med. Chem. 2010, 53, 5061–5084.
- 5
- 5aG. Klebe, Wirkstoffdesign. Entwurf und Wirkung von Arzneimitteln, 2nd ed., Spektrum, Heidelberg, 2009;
- 5bG. Klebe, Drug Design, Springer, Berlin, 2013;
10.1007/978-3-642-17907-5 Google Scholar
- 5c Structure-Based Drug Discovery (Ed. ), Humana, Springer, New York, 2012;
- 5d De Novo Molecular Design (Ed.: ), Wiley-VCH, Weinheim, New York, 2014;
- 5eA. K. Ghosh, S. Gemma, Structure-Based Design of Drugs and Other Bioactive Molecules, Wiley-VCH, Weinheim, 2014.
10.1002/9783527665211 Google Scholar
- 6For early examples, see
- 6aP. Y. S. Lam, P. K. Jahdav, C. J. Eyermann, C. N. Hodge, Y. Ru, L. T. Bacheler, J. L. Meek, M. J. Otto, M. M. Rayner, Y. N. Wong, C.-H. Chang, P. C. Weber, D. A. Jackson, T. R. Sharpe, S. Erickson-Viitanen, Science 1994, 263, 380–384;
- 6bU. Obst, V. Gramlich, F. Diederich, L. Weber, D. W. Banner, Angew. Chem. Int. Ed. Engl. 1995, 34, 1739–1742; Angew. Chem. 1995, 107, 1874–1877.
- 7For recent reviews, see
- 7aA. M. Davis, S. A. St-Gallay, G. J. Kleywegt, Drug Discovery Today 2008, 13, 831–841;
- 7bM. Congreve, C. J. Langmead, J. S. Mason, F. H. Marshall, J. Med. Chem. 2011, 54, 4283–4311;
- 7cD. J. Huggins, W. Sherman, B. Tidor, J. Med. Chem. 2012, 55, 1424–1444;
- 7dA. A. Alex, D. S. Millan in Drug Design Strategies: Quantitative Approaches, RSC Drug Discovery Series No. 13 (Eds.: ), Royal Society of Chemistry, Cambridge, 2012, pp. 108–163;
- 7eJ. Michel, Phys. Chem. Chem. Phys. 2014, 16, 4465–4477.
- 8
- 8aJ. E. Ladbury, Chem. Biol. 1996, 3, 973–980;
- 8bR. Ludwig, Angew. Chem. Int. Ed. 2001, 40, 1808–1827;
10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 1856–1876;
- 8cS. W. Homans, Drug Discovery Today 2007, 12, 534–539;
- 8dP. Ball, Chem. Rev. 2008, 108, 74–108.
- 9
- 9aJ.-M. Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 89–112; Angew. Chem. 1988, 100, 91–116;
- 9bD. J. Cram, Angew. Chem. Int. Ed. Engl. 1988, 27, 1009–1020; Angew. Chem. 1988, 100, 1041–1052;
- 9cC. J. Pedersen, Angew. Chem. Int. Ed. Engl. 1988, 27, 1021–1027; Angew. Chem. 1988, 100, 1053–1059;
- 9dfor a historical survey on supramolecular chemistry from the perspective of this journal, see F. Diederich, Angew. Chem. Int. Ed. 2013, 52, 2714–2742; Angew. Chem. 2013, 125, 2778–2807.
- 10
- 10aF. Diederich, Angew. Chem. Int. Ed. Engl. 1988, 27, 362–386; Angew. Chem. 1988, 100, 372–396;
- 10bF. Diederich, Cyclophanes, Royal Society of Chemistry, London, 1991;
10.1039/9781788010924 Google Scholar
- 10cF. Diederich in Modern Cyclophane Chemistry (Eds.: ), Wiley-VCH, Weinheim, 2004, pp. 519–546.
- 11
- 11aD. A. Dougherty, D. A. Stauffer, Science 1990, 250, 1558–1560;
- 11bH.-J. Schneider, Angew. Chem. Int. Ed. Engl. 1991, 30, 1417–1436; Angew. Chem. 1991, 103, 1419–1439;
- 11c Supramolecular Chemistry: From Molecules to Nanomaterials, (Molecular Recognition), Vol. 3 (Eds.: ), Wiley, Chichester, 2012;
- 11dD. A. Dougherty, Acc. Chem. Res. 2013, 46, 885–893.
- 12F. P. Schmidtchen in Supramolecular Chemistry: From Molecules to Nanomaterials, (Techniques), Vol. 2 (Eds.: ), Wiley, Chichester, 2012, pp. 275–296.
- 13
- 13aW. Kauzmann, Adv. Prot. Chem. 1959, 14, 1–63;
- 13bC. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed., Wiley, New York, 1980;
- 13cW. Blokzijl, J. B. F. N. Engberts, Angew. Chem. Int. Ed. Engl. 1993, 32, 1545–1579; Angew. Chem. 1993, 105, 1610–1650.
- 14
- 14aS. B. Ferguson, E. M. Seward, F. Diederich, E. M. Sanford, A. Chou, P. Inocencio-Szweda, C. B. Knobler, J. Org. Chem. 1988, 53, 5593–5595. The crystal structure of this first cyclophane host, for which enthalpically driven complexation was demonstrated by ITC, contained two disordered high-energy water molecules in the cavity;
- 14bD. B. Smithrud, F. Diederich, J. Am. Chem. Soc. 1990, 112, 339–343;
- 14cD. B. Smithrud, T. B. Wyman, F. Diederich, J. Am. Chem. Soc. 1991, 113, 5420–5426;
- 14dF. Diederich, D. B. Smithrud, E. M. Sanford, T. B. Wyman, S. B. Ferguson, D. R. Carcanague, I. Chao, K. N. Houk, Acta Chem. Scand. 1992, 46, 205–215;
- 14efor a discussion, see also: E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210–1250; Angew. Chem. 2003, 115, 1244–1287.
- 15For enthalpy–entropy compensation, see
- 15aY. Inoue, Y. Liu, L.-H. Tong, B.-J. Shen, D.-S. Jin, J. Am. Chem. Soc. 1993, 115, 10637–10644;
- 15bJ. D. Dunitz, Chem. Biol. 1995, 2, 709–712;
- 15cL. Liu, Q.-X. Guo, Chem. Rev. 2001, 101, 673–695;
- 15dV. M. Krishnamurthy, B. R. Bohall, V. Semetey, G. M. Whitesides, J. Am. Chem. Soc. 2006, 128, 5802–5812;
- 15eK. K. Frederick, M. S. Marlow, K. G. Valentine, A. J. Wand, Nature 2007, 448, 325–330;
- 15ffor enthalpy–entropy compensation in drug development, see E. Freire, Drug Discovery Today 2008, 13, 869–874;
- 15gJ. D. Chodera, D. L. Mobley, Annu. Rev. Biophys. 2013, 42, 121–142;
- 15hJ. M. Myslinski, J. H. Clements, J. E. DeLorbe, S. F. Martin, ACS Med. Chem. Lett. 2013, 4, 1048–1053;
- 15ifor an example of enthalpy–entropy compensation in multisubstrate binding to a large hydrophobic capsule, see A. Grego, A. Müller, I. A. Weinstock, Angew. Chem. Int. Ed. 2013, 52, 8358–8362; Angew. Chem. 2013, 125, 8516–8520.
- 16U. Obst, D. W. Banner, L. Weber, F. Diederich, Chem. Biol. 1997, 4, 287–295.
- 17For recent reviews and monographs on protein–ligand interactions, see
- 17aV. Harmat, G. Náray-Szabó, Croat. Chem. Acta 2009, 82, 277–282;
- 17bR. Baron, J. A. McCammon, Annu. Rev. Phys. Chem. 2013, 64, 151–175;
- 17c Protein-Ligand Interactions, Methods and Applications, 2nd ed. (Eds.: ), Humana, Springer, New York 2013.
- 18Interactions with aromatic rings in chemical and biological systems have been extensively reviewed:
- 18aRef. [14e];
- 18bL. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808–4842; Angew. Chem. 2011, 123, 4908–4944;
- 18can entire issue of Acc. Chem. Res. has been devoted to this topic: Aromatic Interactions in Chem. Biol., Acc. Chem. Res. 2013, 46, 873–1050.
- 19D. J. Cram, J. M. Cram, Container Molecules and Their Guests, Royal Society of Chemistry, Cambridge, 1997.
10.1039/9781847550620 Google Scholar
- 20
- 20aJ. Rebek, Jr., Angew. Chem. Int. Ed. 2005, 44, 2068–2078; Angew. Chem. 2005, 117, 2104–2115;
- 20bS. M. Biros, J. Rebek, Jr., Chem. Soc. Rev. 2007, 36, 93–104;
- 20cJ. Rebek, Jr., Acc. Chem. Res. 2009, 42, 1660–1668;
- 20dD. Ajami, J. Rebek, Jr., Acc. Chem. Res. 2013, 46, 990–999.
- 21For selected reviews on further research on containers, see
- 21aR. Warmuth, J. Yoon, Acc. Chem. Res. 2001, 34, 95–105;
- 21bM. D. Pluth, K. N. Raymond, Chem. Soc. Rev. 2007, 36, 161–171;
- 21cM. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418–3438; Angew. Chem. 2009, 121, 3470–3490;
- 21dT. R. Cook, V. Vajpayee, M. H. Lee, P. J. Stang, K. W. Chi, Acc. Chem. Res. 2013, 46, 2464–2474;
- 21eM. M. J. Smulders, I. A. Riddell, C. Browne, J. R. Nitschke, Chem. Soc. Rev. 2013, 42, 1728–1754.
- 22
- 22aJ. A. Olsen, D. W. Banner, P. Seiler, U. O. Sander, A. D’Arcy, M. Stihle, K. Müller, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 2507–2511; Angew. Chem. 2003, 115, 2611–2615;
- 22bJ. A. Olsen, D. W. Banner, P. Seiler, B. Wagner, T. Tschopp, U. Obst-Sander, M. Kansy, K. Müller, F. Diederich, ChemBioChem 2004, 5, 666–675.
- 23R. Paulini, K. Müller, F. Diederich, Angew. Chem. Int. Ed. 2005, 44, 1788–1805; Angew. Chem. 2005, 117, 1820–1839.
- 24A. Choudhary, D. Gandla, G. R. Krow, R. T. Raines, J. Am. Chem. Soc. 2009, 131, 7244–7246.
- 25
- 25aL. A. Hardegger, B. Kuhn, B. Spinnler, L. Anselm, R. Ecabert, M. Stihle, B. Gsell, R. Thoma, J. Diez, J. Benz, J.-M. Plancher, G. Hartmann, D. W. Banner, W. Haap, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 314–318; Angew. Chem. 2011, 123, 329–334;
- 25bL. A. Hardegger, B. Kuhn, B. Spinnler, L. Anselm, R. Ecabert, M. Stihle, B. Gsell, R. Thoma, J. Diez, J. Benz, J.-M. Plancher, G. Hartmann, Y. Isshiki, K. Morikami, N. Shimma, W. Haap, D. W. Banner, F. Diederich, ChemMedChem 2011, 6, 2048–2054.
- 26W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw Hill, New York, 1989.
- 27E. L. Piatnitski, R. A. Flowers II, K. Deshayes, Chem. Eur. J. 2000, 6, 999–1006.
10.1002/(SICI)1521-3765(20000317)6:6<999::AID-CHEM999>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 28F. Biedermann, W. M. Nau, H.-J. Schneider, Angew. Chem. Int. Ed. 2014, 53, 11158—11171; Angew. Chem. 2014, 126, 11338—11352.
- 29H.-J. Schneider, Angew. Chem. Int. Ed. 2009, 48, 3924–3977; Angew. Chem. 2009, 121, 3982–4036.
- 30
- 30aR. L. VanEtten, J. F. Sebastian, G. A. Clowes, M. L. Bender, J. Am. Chem. Soc. 1967, 89, 3242–3253;
- 30bW. Saenger, Angew. Chem. Int. Ed. Engl. 1980, 19, 344–362; Angew. Chem. 1980, 92, 343–361;
- 30cT. D. Kühne, R. Z. Khaliullin, Nat. Commun. 2013, 4, 1450.
- 31
- 31aC. Carey, Y.-K. Cheng, P. J. Rossky, Chem. Phys. 2000, 258, 415–425;
- 31bN. T. Southall, K. A. Dill, J. Phys. Chem. B 2000, 104, 1326–1331;
- 31cT. Young, L. Hua, X. Huang, R. Abel, R. Friesner, B. J. Berne, Proteins 2010, 78, 1856–1869;
- 31dP. Setny, R. Baron, J. A. McCammon, J. Chem. Theory Comput. 2010, 6, 2866–2871.
- 32
- 32aJ. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. Int. Ed. 2005, 44, 4844–4870; Angew. Chem. 2005, 117, 4922–4949;
- 32bE. Masson, X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Lu, RSC Adv. 2012, 2, 1213–1247.
- 33S. Moghaddam, C. Yang, M. Rekharsky, Y. H. Ko, K. Kim, Y. Inoue, M. K. Gilson, J. Am. Chem. Soc. 2011, 133, 3570–3581.
- 34L. Isaacs, S.-K. Park, S. Liu, Y. H. Ko, N. Selvapalam, Y. Kim, H. Kim, P. Y. Zavalij, G.-H. Kim, H.-S. Lee, K. Kim, J. Am. Chem. Soc. 2005, 127, 18000–18001.
- 35
- 35aC. Marquez, W. M. Nau, Angew. Chem. Int. Ed. 2001, 40, 4387–4390;
10.1002/1521-3773(20011203)40:23<4387::AID-ANIE4387>3.0.CO;2-H CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4515–4518;
- 35bW. M. Nau, M. Florea, K. I. Assaf, Isr. J. Chem. 2011, 51, 559–577;
- 35cF. Biedermann, V. D. Uzunova, O. A. Scherman, W. M. Nau, A. De Simone, J. Am. Chem. Soc. 2012, 134, 15318–15323;
- 35dF. Biedermann, M. Vendruscolo, O. A. Scherman, A. De Simone, W. M. Nau, J. Am. Chem. Soc. 2013, 135, 14879–14888.
- 36For a recent experimental study showing the importance of the gain in cohesive solvent–solvent interactions during molecular recognition processes, see L. Yang, C. Adam, G. S. Nichol, S. L. Cockroft, Nat. Chem. 2013, 5, 1006–1010.
- 37For an ITC study of the capsular binding of ammonium ions in water with a strong entropic driving force arising from the desolvation of the ions, see C. Sgarlata, J. S. Mugridge, M. D. Pluth, B. E. F. Tiedemann, V. Zito, G. Arena, K. N. Raymond, J. Am. Chem. Soc. 2010, 132, 1005–1009.
- 38L. Cao, M. Šekutor, P. Y. Zavalij, K. Mlinarić-Majerski, R. Glaser, L. Isaacs, Angew. Chem. Int. Ed. 2014, 53, 988–993; Angew. Chem. 2014, 126, 1006–1011.
- 39M. Nakasako, Philos. Trans. R. Soc. London Ser. B 2004, 359, 1191–1206.
- 40J. D. Dunitz, Science 1994, 264, 670.
- 41
- 41aA. T. García-Sosa, R. L. Mancera, P. M. Dean, J. Mol. Model. 2003, 9, 172–182;
- 41bM. L. Verdonk, G. Chessari, J. C. Cole, M. J. Hartshorn, C. W. Murray, J. W. M. Nissink, R. D. Taylor, R. Taylor, J. Med. Chem. 2005, 48, 6504–6515;
- 41cN. Huang, B. K. Shoichet, J. Med. Chem. 2008, 51, 4862–4865;
- 41dJ. Michel, J. Tirado-Rives, W. L. Jorgensen, J. Am. Chem. Soc. 2009, 131, 15403–15411;
- 41eS. B. A. de Beer, N. P. E. Vermeulen, C. Oostenbrink, Curr. Top. Med. Chem. 2010, 10, 55–66;
- 41fR. Baron, P. Setny, J. A. McCammon, J. Am. Chem. Soc. 2010, 132, 12091–12097;
- 41gRef. [31c];
- 41hL. Wang, B. J. Berne, R. A. Friesner, Proc. Natl. Acad. Sci. USA 2011, 108, 1326–1330;
- 41iS. Riniker, L. J. Barandun, F. Diederich, O. Krämer, A. Steffen, W. F. van Gunsteren, J. Comput.-Aided Mol. Des. 2012, 26, 1293–1309;
- 41jR. A. Pearlstein, W. Sherman, R. Abel, Proteins 2013, 81, 1509–1526;
- 41kA. T. García-Sosa, J. Chem. Inf. Model. 2013, 53, 1388–1405;
- 41lS. Barelier, S. E. Boyce, I. Fish, M. Fischer, D. B. Goodin, B. K. Shoichet, PLoS One 2013, 8, e 69153;
- 41mK. Haider, D. J. Huggins, J. Chem. Inf. Model. 2013, 53, 2571–2586;
- 41nP. W. Snyder, M. R. Lockett, D. T. Moustakas, G. M. Whitesides, Eur. Phys. J. Spec. Top. 2014, 223, 853–891.
- 42M. C. Witschel, H. W. Höffken, M. Seet, L. Parra, T. Mietzner, F. Thater, R. Niggeweg, F. Röhl, B. Illarionov, F. Rohdich, J. Kaiser, M. Fischer, A. Bacher, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 7931–7935; Angew. Chem. 2011, 123, 8077–8081.
- 43
- 43aB. Masjost, P. Ballmer, E. Borroni, G. Zürcher, F. K. Winkler, R. Jakob-Roetne, F. Diederich, Chem. Eur. J. 2000, 6, 971–982;
10.1002/(SICI)1521-3765(20000317)6:6<971::AID-CHEM971>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 43bC. Lerner, A. Ruf, V. Gramlich, B. Masjost, G. Zürcher, R. Jakob-Roetne, E. Borroni, F. Diederich, Angew. Chem. Int. Ed. 2001, 40, 4040–4042;
10.1002/1521-3773(20011105)40:21<4040::AID-ANIE4040>3.0.CO;2-C CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4164–4166;
- 43cC. Lerner, B. Masjost, A. Ruf, V. Gramlich, R. Jakob-Roetne, G. Zürcher, E. Borroni, F. Diederich, Org. Biomol. Chem. 2003, 1, 42–49.
- 44
- 44aJ. Borgulya, H. Bruderer, K. Bernauer, G. Zürcher, M. Da Prada, Helv. Chim. Acta 1989, 72, 952–968;
- 44bJ. Vidgren, L. A. Svensson, A. Liljas, Nature 1994, 368, 354–358;
- 44cP. T. Männistö, S. Kaakkola, Pharmacol. Rev. 1999, 51, 593–628;
- 44dG. M. Keating, K. A. Lyseng-Williamson, CNS Drugs 2005, 19, 165–184.
- 45
- 45aM. Ellermann, R. Jakob-Roetne, C. Lerner, E. Borroni, D. Schlatter, D. Roth, A. Ehler, M. G. Rudolph, F. Diederich, Angew. Chem. Int. Ed. 2009, 48, 9092–9096; Angew. Chem. 2009, 121, 9256–9260;
- 45bM. Ellermann, R. Paulini, R. Jakob-Roetne, C. Lerner, E. Borroni, D. Roth, A. Ehler, W. B. Schweizer, D. Schlatter, M. G. Rudolph, F. Diederich, Chem. Eur. J. 2011, 17, 6369–6381;
- 45cM. Ellermann, C. Lerner, G. Burgy, A. Ehler, C. Bissantz, R. Jakob-Roetne, R. Paulini, O. Allemann, H. Tissot, D. Grünstein, M. Stihle, F. Diederich, M. G. Rudolph, Acta Crystallogr. Sect. D 2012, 68, 253–260;
- 45dfor a recent survey of crystal structures of apo-COMT, see A. Ehler, J. Benz, D. Schlatter, M. G. Rudolph, Acta Crystallogr. Sect. D 2014, 70, 2163–2174.
- 46
- 46aS. R. Hörtner, T. Ritschel, B. Stengl, C. Kramer, W. B. Schweizer, B. Wagner, M. Kansy, G. Klebe, F. Diederich, Angew. Chem. Int. Ed. 2007, 46, 8266–8269; Angew. Chem. 2007, 119, 8414–8417;
- 46bP. C. Kohler, T. Ritschel, W. B. Schweizer, G. Klebe, F. Diederich, Chem. Eur. J. 2009, 15, 10809–10817;
- 46cT. Ritschel, S. Hoertner, A. Heine, F. Diederich, G. Klebe, ChemBioChem 2009, 10, 716–727.
- 47U. Grädler, H.-D. Gerber, D. M. Goodenough-Lashua, G. A. Garcia, R. Ficner, K. Reuter, M. T. Stubbs, G. Klebe, J. Mol. Biol. 2001, 306, 455–467.
- 48Q.-Q. Wang, V. W. Day, K. Bowman-James, Angew. Chem. Int. Ed. 2012, 51, 2119–2123; Angew. Chem. 2012, 124, 2161–2165.
- 49T. Ritschel, P. C. Kohler, G. Neudert, A. Heine, F. Diederich, G. Klebe, ChemMedChem 2009, 4, 2012–2023.
- 50
- 50aF. Immekus, L. J. Barandun, M. Betz, F. Debaene, S. Petiot, S. Sanglier-Cianferani, K. Reuter, F. Diederich, G. Klebe, ACS Chem. Biol. 2013, 8, 1163–1178;
- 50bL. J. Barandun, F. Immekus, P. C. Kohler, T. Ritschel, A. Heine, P. Orlando, G. Klebe, F. Diederich, Acta Crystallogr. Sect. D 2013, 69, 1798–1807.
- 51L. J. Barandun, F. Immekus, P. C. Kohler, S. Tonazzi, B. Wagner, S. Wendelspiess, T. Ritschel, A. Heine, M. Kansy, G. Klebe, F. Diederich, Chem. Eur. J. 2012, 18, 9246–9257.
- 52R. Brenk, M. T. Stubbs, A. Heine, K. Reuter, G. Klebe, ChemBioChem 2003, 4, 1066–1077.
- 53
- 53aK. L. Whalen, M. A. Spies, J. Chem. Inf. Model. 2013, 53, 2349–2359;
- 53bM. A. Spies, ACS Med. Chem. Lett. 2013, 4, 895–897.
- 54
- 54aS. Grüner, M. Neeb, L. J. Barandun, F. Sielaff, C. Hohn, S. Kojima, T. Steinmetzer, F. Diederich, G. Klebe, Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2843–2850;
- 54bM. Neeb, P. Czodrowski, A. Heine, L. J. Barandun, C. Hohn, F. Diederich, G. Klebe, J. Med. Chem. 2014, 57, 5554–5565;
- 54cM. Neeb, M. Betz, A. Heine, L. J. Barandun, C. Hohn, F. Diederich, G. Klebe, J. Med. Chem. 2014, 57, 5566–5578.
- 55
- 55aV. M. Krishnamurthy, G. K. Kaufman, A. R. Urbach, I. Gitlin, K. L. Gudiksen, D. B. Weibel, G. M. Whitesides, Chem. Rev. 2008, 108, 946–1051;
- 55bP. W. Snyder, J. Mecinović, D. T. Moustakas, S. W. Thomas III, M. Harder, E. T. Mack, M. R. Lockett, A. Héroux, W. Sherman, G. M. Whitesides, Proc. Natl. Acad. Sci. USA 2011, 108, 17889–17894;
- 55cB. Breiten, M. R. Lockett, W. Sherman, S. Fujita, M. Al-Sayah, H. Lange, C. M. Bowers, A. Heroux, G. Krilov, G. M. Whitesides, J. Am. Chem. Soc. 2013, 135, 15579–15584;
- 55dM. R. Lockett, H. Lange, B. Breiten, A. Heroux, W. Sherman, D. Rappoport, P. O. Yau, P. W. Snyder, G. M. Whitesides, Angew. Chem. Int. Ed. 2013, 52, 7714–7717; Angew. Chem. 2013, 125, 7868–7871.
- 56
- 56aA. Biela, F. Sielaff, F. Terwesten, A. Heine, T. Steinmetzer, G. Klebe, J. Med. Chem. 2012, 55, 6094–6110;
- 56bA. Biela, M. Khayat, H. Tan, J. Kong, A. Heine, D. Hangauer, G. Klebe, J. Mol. Biol. 2012, 418, 350–366.
- 57
- 57aL. Englert, A. Biela, M. Zayed, A. Heine, D. Hangauer, G. Klebe, Biochim. Biophys. Acta Gen. Subj. 2010, 1800, 1192–1202;
- 57bA. Biela, N. N. Nasief, M. Betz, A. Heine, D. Hangauer, G. Klebe, Angew. Chem. Int. Ed. 2013, 52, 1822–1828; Angew. Chem. 2013, 125, 1868–1876;
- 57cS. G. Krimmer, M. Betz, A. Heine, G. Klebe, ChemMedChem 2014, 9, 833–846.
- 58
- 58aA. Biela, M. Betz, A. Heine, G. Klebe, ChemMedChem 2012, 7, 1423–1434;
- 58bN. N. Nasief, H. Tan, J. Kong, D. Hangauer, J. Med. Chem. 2012, 55, 8283–8302;
- 58cN. N. Nasief, D. Hangauer, J. Med. Chem. 2014, 57, 2315–2333.
- 59M. Zürcher, F. Diederich, J. Org. Chem. 2008, 73, 4345–4361.
- 60E. Fischer, Chem. Ber. 1894, 27, 2985–2993.
- 61A. Nicholls, G. B. McGaughey, R. P. Sheridan, A. C. Good, G. Warren, M. Mathieu, S. W. Muchmore, S. P. Brown, J. A. Grant, J. A. Haigh, N. Nevins, A. N. Jain, B. Kelley, J. Med. Chem. 2010, 53, 3862–3886.
- 62
- 62aM. Weisel, E. Proschak, G. Schneider, Chem. Cent. J. 2007, 1, 7;
- 62bS. Henrich, O. M. H. Salo-Ahen, B. Huang, F. Rippmann, G. Cruciani, R. C. Wade, J. Mol. Recognit. 2010, 23, 209–219;
- 62cX. Zheng, L. Gan, E. Wang, J. Wang, AAPS J. 2013, 15, 228–241;
- 62d Focus on Structural Biology, Vol. 8 (Ed.: ), Springer, Dordrecht, 2013;
- 62eD. Rognan in Chemical Genomics and Proteomics (Eds.: ), CRC, Boca Raton, 2013, pp. 173–204.
10.1201/b12957-7 Google Scholar
- 63S. Mecozzi, J. Rebek, Jr., Chem. Eur. J. 1998, 4, 1016–1022.
10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B CAS Web of Science® Google Scholar
- 64
- 64aJ. R. Moran, S. Karbach, D. J. Cram, J. Am. Chem. Soc. 1982, 104, 5826–5828;
- 64bD. J. Cram, Science 1983, 219, 1177–1183.
- 65
- 65aL. Trembleau, J. Rebek, Jr., Science 2003, 301, 1219–1220;
- 65bA. Scarso, L. Trembleau, J. Rebek, Jr., Angew. Chem. Int. Ed. 2003, 42, 5499–5502; Angew. Chem. 2003, 115, 5657–5660;
- 65cB. W. Purse, J. Rebek, Jr., Proc. Natl. Acad. Sci. USA 2006, 103, 2530–2534.
- 66
- 66aN. O. B. Lüttschwager, T. N. Wassermann, R. A. Mata, M. A. Suhm, Angew. Chem. Int. Ed. 2013, 52, 463–466; Angew. Chem. 2013, 125, 482–485;
- 66bJ. N. Byrd, R. J. Bartlett, J. A. Montgomery, Jr., J. Phys. Chem. A 2014, 118, 1706–1712.
- 67J. P. Lowe, Prog. Phys. Org. Chem. 1968, 6, 1–80.
- 68K.-D. Zhang, D. Ajami, J. V. Gavette, J. Rebek, Jr., J. Am. Chem. Soc. 2014, 136, 5264–5266.
- 69For reviews of the various switching processes, see
- 69aV. A. Azov, A. Beeby, M. Cacciarini, A. G. Cheetham, F. Diederich, M. Frei, J. K. Gimzewski, V. Gramlich, B. Hecht, B. Jaun, T. Latychevskaia, A. Lieb, Y. Lill, F. Marotti, A. Schlegel, R. R. Schlittler, P. J. Skinner, P. Seiler, Y. Yamakoshi, Adv. Funct. Mater. 2006, 16, 147–156;
- 69bI. Pochorovski, F. Diederich, Isr. J. Chem. 2012, 52, 20–29;
- 69cI. Pochorovski, F. Diederich, Acc. Chem. Res. 2014, 47, 2096–2105.
- 70
- 70aT. Gottschalk, B. Jaun, F. Diederich, Angew. Chem. Int. Ed. 2007, 46, 260–264; Angew. Chem. 2007, 119, 264–268;
- 70bT. Gottschalk, P. D. Jarowski, F. Diederich, Tetrahedron 2008, 64, 8307–8317.
- 711000 ps simulation time with 1.0 fs time steps, MMFF94s force field, 300 K, GB/SA model for CHCl3; MacroModel, version 9.5; Schrödinger LLC, New York, NY, USA, 2007.
- 72J. Hornung, D. Fankhauser, L. D. Shirtcliff, A. Praetorius, W. B. Schweizer, F. Diederich, Chem. Eur. J. 2011, 17, 12362–12371.
- 73
- 73aRef. [18b];
- 73bS. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, A. Fujii, J. Phys. Chem. A 2006, 110, 10163–10168;
- 73cK. Shibasaki, A. Fujii, N. Mikami, S. Tsuzuki, J. Phys. Chem. A 2007, 111, 753–758;
- 73dM. Nishio, Y. Umezawa, J. Fantini, M. S. Weiss, P. Chakrabarti, Phys. Chem. Chem. Phys. 2014, 16, 12648–12683.
- 74D. Fankhauser, D. Kolarski, W. R. Grüning, F. Diederich, Eur. J. Org. Chem. 2014, 3575–3583.
- 75
- 75aE. Dalcanale, P. Soncini, G. Bacchilega, F. Ugozzoli, J. Chem. Soc. Chem. Commun. 1989, 500–502;
- 75bP. Soncini, S. Bonsignore, E. Dalcanale, F. Ugozzoli, J. Org. Chem. 1992, 57, 4608–4612.
- 76
- 76aM. Rohmer, Nat. Prod. Rep. 1999, 16, 565–574;
- 76bM. Rodríguez-Concepción, A. Boronat, Plant Physiol. 2002, 130, 1079–1089;
- 76cW. Eisenreich, A. Bacher, D. Arigoni, F. Rohdich, Cell. Mol. Life Sci. 2004, 61, 1401–1426;
- 76dT. Gräwert, M. Groll, F. Rohdich, A. Bacher, W. Eisenreich, Cell. Mol. Life Sci. 2011, 68, 3797–3814.
- 77T. Masini, B. S. Kroezen, A. K. H. Hirsch, Drug Discovery Today 2013, 18, 1256–1262.
- 78H. Joomaa, J. Wiesner, S. Sanderbrand, B. Altincicek, C. Weidemeyer, M. Hintz, J. Türbachova, M. Eberl, J. Zeidler, H. K. Lichtenthaler, D. Soldati, E. Beck, Science 1999, 285, 1573–1576.
- 79A. K. H. Hirsch, F. R. Fischer, F. Diederich, Angew. Chem. Int. Ed. 2007, 46, 338–352; Angew. Chem. 2007, 119, 342–357.
- 80
- 80aL. Miallau, M. S. Alphey, L. E. Kemp, G. A. Leonard, S. M. McSweeney, S. Hecht, A. Bacher, W. Eisenreich, F. Rohdich, W. N. Hunter, Proc. Natl. Acad. Sci. USA 2003, 100, 9173–9178 (PDB ID: 1OJ4); for other X-ray crystal structures of IspE, see
- 80bT. Wada, T. Kuzuyama, S. Satoh, S. Kuramitsu, S. Yokoyama, S. Unzai, J. R. H. Tame, S.-Y. Park, J. Biol. Chem. 2003, 278, 30022–30027 (PDB ID: 1UEK);
- 80cC. M. Crane, A. K. H. Hirsch, M. S. Alphey, T. Sgraja, S. Lauw, V. Illarionova, F. Rohdich, W. Eisenreich, W. N. Hunter, A. Bacher, F. Diederich, ChemMedChem 2008, 3, 91–101 (PDB ID: 2V2Q, 2V2V);
- 80dT. Sgraja, M. S. Alphey, S. Ghilagaber, R. Marquez, M. N. Robertson, J. L. Hemmings, S. Lauw, F. Rohdich, A. Bacher, W. Eisenreich, V. Illarionova, W. N. Hunter, FEBS J. 2008, 275, 2779–2794 (PDB ID: 2V8P, 2V34, 2V2Z);
- 80eJ. Kalinowska-Tłuścik, L. Miallau, M. Gabrielsen, G. A. Leonard, S. M. McSweeney, W. N. Hunter, Acta Crystallogr. Sect. F 2010, 66, 237–241 (PDB ID: 2WW4);
- 80fS. Shan, X. Chen, T. Liu, H. Zhao, Z. Rao, Z. Lou, FASEB J. 2011, 25, 1577–1584 (PDB ID: 3PYD, 3PYE, 3PYF, 3PYG);
- 80gto be published: PDB ID: 4DXL, 4ED4, 4EMD.
- 81
- 81aA. C. Dar, K. M. Shokat, Annu. Rev. Biochem. 2011, 80, 769–795;
- 81bH. Patterson, R. Nibbs, I. McInnes, S. Siebert, Clin. Exp. Immunol. 2014, 176, 1–10.
- 82
- 82aL. M. Wilhelmsson, Q. Rev. Biophys. 2010, 43, 159–183;
- 82bA. A. Tanpure, M. G. Pawar, S. G. Srivatsan, Isr. J. Chem. 2013, 53, 366–378;
- 82cM. Suchý, R. H. E. Hudson, J. Org. Chem. 2014, 79, 3336–3347;
- 82dD. D. Haveliwala, N. R. Kamdar, P. T. Mistry, S. K. Patel, Nucleosides Nucleotides Nucleic Acids 2014, 33, 80–91.
- 83
- 83aP. A. Jones, D. Takai, Science 2001, 293, 1068–1070;
- 83bS. Bareyt, T. Carell, Angew. Chem. Int. Ed. 2008, 47, 181–184; Angew. Chem. 2008, 120, 187–190;
- 83cR. Bonasio, S. Tu, D. Reinberg, Science 2010, 330, 612–616;
- 83dS. Feng, S. E. Jacobsen, W. Reik, Science 2010, 330, 622–627;
- 83eM. Münzel, D. Globisch, T. Carell, Angew. Chem. Int. Ed. 2011, 50, 6460–6468; Angew. Chem. 2011, 123, 6588–6596.
- 84A. P. Schütz, S. Osawa, J. Mathis, A. K. H. Hirsch, B. Bernet, B. Illarionov, M. Fischer, A. Bacher, F. Diederich, Eur. J. Org. Chem. 2012, 3278–3287.
- 85Some Ki values were calculated by the Cheng–Prusoff Equation: Y.-C. Cheng, W. H. Prusoff, Biochem. Pharmacol. 1973, 22, 3099–3108.
- 86
- 86aA. K. H. Hirsch, S. Lauw, P. Gersbach, W. B. Schweizer, F. Rohdich, W. Eisenreich, A. Bacher, F. Diederich, ChemMedChem 2007, 2, 806–810;
- 86bA. K. H. Hirsch, M. S. Alphey, S. Lauw, M. Seet, L. Barandun, W. Eisenreich, F. Rohdich, W. N. Hunter, A. Bacher, F. Diederich, Org. Biomol. Chem. 2008, 6, 2719–2730;
- 86cP. Mombelli, C. Le Chapelain, N. Munzinger, E. Joliat, B. Illarionov, W. B. Schweizer, A. K. H. Hirsch, M. Fischer, A. Bacher, F. Diederich, Eur. J. Org. Chem. 2013, 1068–1079.
- 87A recent report on 4-quinazolinone-based inhibitors of EcIspE with IC50 values in the low micromolar range could not be confirmed in our robust assay. We presume that the compounds bind to the auxiliary enzyme firefly luciferase rather than to EcIspE: N. Tidten-Luksch, R. Grimaldi, L. S. Torrie, J. A. Frearson, W. N. Hunter, R. Brenk, PLoS One 2012, 7, e 35792.
- 88P. R. Gerber, K. Müller, J. Comput.-Aid. Mol. Des. 1995, 9, 251–268.
- 89
- 89aG. Wuitschik, M. Rogers-Evans, A. Buckl, M. Bernasconi, M. Märki, T. Godel, H. Fischer, B. Wagner, I. Parrilla, F. Schuler, J. Schneider, A. Alker, W. B. Schweizer, K. Müller, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 4512–4515; Angew. Chem. 2008, 120, 4588–4591;
- 89bG. Wuitschik, E. M. Carreira, B. Wagner, H. Fischer, I. Parrilla, F. Schuler, M. Rogers-Evans, K. Müller, J. Med. Chem. 2010, 53, 3227–3246.
- 90
- 90aW. L. Jorgensen, J. Pranata, J. Am. Chem. Soc. 1990, 112, 2008–2010;
- 90bT. J. Murray, S. C. Zimmerman, J. Am. Chem. Soc. 1992, 114, 4010–4011;
- 90cB. A. Blight, C. A. Hunter, D. A. Leigh, H. McNab, P. I. T. Thomson, Nat. Chem. 2011, 3, 244–248.
- 91C. S. Leung, S. S. F. Leung, J. Tirado-Rives, W. L. Jorgensen, J. Med. Chem. 2012, 55, 4489–4500.
- 92A. P. Schütz, S. Locher, B. Bernet, B. Illarionov, M. Fischer, A. Bacher, F. Diederich, Eur. J. Org. Chem. 2013, 880–887.
- 93I. Hale, P. M. O’Neill, N. G. Berry, A. Odom, R. Sharma, MedChemComm 2012, 3, 418–433.
- 94
- 94aL. E. Kemp, C. S. Bond, W. N. Hunter, Proc. Natl. Acad. Sci. USA 2002, 99, 6591–6596;
- 94bS. Steinbacher, J. Kaiser, J. Wungsintaweekul, S. Hecht, W. Eisenreich, S. Gerhardt, A. Bacher, F. Rohdich, J. Mol. Biol. 2002, 316, 79–88.
- 95A total of 56 X-ray crystal structures of IspF enzymes have been reported to date in the PDB (July 2014). Early structures are reviewed in W. N. Hunter, J. Biol. Chem. 2007, 282, 21573–21577.
- 96C. M. Crane, J. Kaiser, N. L. Ramsden, S. Lauw, F. Rohdich, W. Eisenreich, W. N. Hunter, A. Bacher, F. Diederich, Angew. Chem. Int. Ed. 2006, 45, 1069–1074; Angew. Chem. 2006, 118, 1082–1087.
- 97The small pocket I in EcIspF contains the side chain of Asp46′.
- 98P. E. F. O’Rourke, K.-T. Justyna, P. K. Fyfe, A. Dawson, W. N. Hunter, BMC Struct. Biol. 2014, 14, 1–12.
- 99Crystal data originate from:
- 99aRef. [94] (PDB ID: 1GX1, 1JY8, 1U3L, 1U3P, 1U40, 1U43);
- 99bRef. [96] (PDB ID: 2GZL);
- 99cS. B. Richard, J. Biol. Chem. 2002, 277, 8667–8672 (PDB ID: 1KNJ, 1KNK);
- 99dT. Sgraja, L. E. Kemp, N. Ramsden, W. N. Hunter, Acta Crystallogr. Sect F 2005, 61, 625–629 (PDB ID: 1YQN).
- 100
- 100aC. Baumgartner, C. Eberle, F. Diederich, S. Lauw, F. Rohdich, W. Eisenreich, A. Bacher, Helv. Chim. Acta 2007, 90, 1043–1068;
- 100bJ. Geist, ETH dissertation No 19777, 2011.
- 101It is not always possible to replace a ribose moiety, which tightly interacts with an Asp or a Glu side chain, see R. Paulini, C. Trindler, C. Lerner, L. Brändli, W. B. Schweizer, R. Jakob-Roetne, G. Zürcher, E. Borroni, F. Diederich, ChemMedChem 2006, 1, 340–357.
- 102
- 102aN. L. Ramsden, L. Buetow, A. Dawson, L. A. Kemp, V. Ulaganathan, R. Brenk, G. Klebe, W. N. Hunter, J. Med. Chem. 2009, 52, 2531–2542;
- 102bD. W. Begley, R. C. Hartley, D. R. Davies, T. E. Edwards, J. T. Leonard, J. Abendroth, C. A. Burris, J. Bhandari, P. J. Myler, B. L. Staker, L. J. Stewart, J. Struct. Funct. Genomics 2011, 12, 63–76;
- 102cZ. Zhang, S. Jakkaraju, J. Blain, K. Gogol, L. Zhao, R. C. Hartley, C. A. Karlsson, B. L. Staker, T. E. Edwards, L. J. Stewart, P. J. Myler, M. Clare, D. W. Begley, J. R. Horn, T. J. Hagen, Bioorg. Med. Chem. Lett. 2013, 23, 6860–6863.
- 103J. G. Geist, S. Lauw, V. Illarionova, B. Illarionov, M. Fischer, T. Gräwert, F. Rohdich, W. Eisenreich, J. Kaiser, M. Groll, C. Scheurer, S. Wittlin, J. L. Alonso-Gómez, W. B. Schweizer, A. Bacher, F. Diederich, ChemMedChem 2010, 5, 1092–1101.
- 104A. H. Fairlamb, P. Blackburn, P. Ulrich, B. T. Chait, A. Cerami, Science 1985, 227, 1485–1487.
- 105M. A. Comini, L. Flohé, Trypanosomatid Dis. Mol. Routes Drug Discovery 2013, 167–199.
- 106A search in the PDB for trypanothione reductase found 27 structures (July 2014).
- 107
- 107aC. H. Faerman, S. N. Savvides, C. Strickland, M. A. Breidenbach, J. A. Ponasik, B. Ganem, D. Ripoll, R. L. Krauth-Siegel, P. A. Karplus, Bioorg. Med. Chem. 1996, 4, 1247–1253;
- 107bC. S. Bond, Y. Zhang, M. Berriman, M. L. Cunningham, A. H. Fairlamb, W. N. Hunter, Structure 1999, 7, 81–89;
- 107cB. Stump, C. Eberle, M. Kaiser, R. Brun, R. L. Krauth-Siegel, F. Diederich, Org. Biomol. Chem. 2008, 6, 3935–3947.
- 108
- 108aS. Bonse, C. Santelli-Rouvier, J. Barbe, R. L. Krauth-Siegel, J. Med. Chem. 1999, 42, 5448–5454;
- 108bB. Chitkul, M. Bradley, Bioorg. Med. Chem. Lett. 2000, 10, 2367–2369;
- 108cA. Saravanamuthu, T. J. Vickers, C. S. Bond, M. R. Peterson, W. N. Hunter, A. H. Fairlamb, J. Biol. Chem. 2004, 279, 29493–29500;
- 108dC. Eberle, B. S. Lauber, D. Fankhauser, M. Kaiser, R. Brun, R. L. Krauth-Siegel, F. Diederich, ChemMedChem 2011, 6, 292–301;
- 108eM. H. Duyzend, C. T. Clark, S. L. Simmons, W. B. Johnson, A. M. Larson, A. M. Leconte, A. W. Wills, M. Ginder-Vogel, A. K. Wilhelm, J. A. Czechowicz, D. G. Alberg, J. Enzyme Inhib. Med. Chem. 2012, 27, 784–794;
- 108fP. Baiocco, G. Poce, S. Alfonso, M. Cocozza, G. C. Porretta, G. Colotti, M. Biava, F. Moraca, M. Botta, V. Yardley, A. Fiorillo, A. Lantella, F. Malatesta, A. Ilari, ChemMedChem 2013, 8, 1175–1183.
- 109
- 109aJ. L. Richardson, I. R. E. Nett, D. C. Jones, M. H. Abdille, I. H. Gilbert, A. H. Fairlamb, ChemMedChem 2009, 4, 1333–1340;
- 109bS. Patterson, D. C. Jones, E. J. Shanks, J. A. Frearson, I. H. Gilbert, P. G. Wyatt, A. H. Fairlamb, ChemMedChem 2009, 4, 1341–1353;
- 109cE. Persch, S. Bryson, N. K. Todoroff, C. Eberle, J. Thelemann, N. Dirdjaja, M. Kaiser, M. Weber, H. Derbani, R. Brun, G. Schneider, E. F. Pai, R. L. Krauth-Siegel, F. Diederich, ChemMedChem 2014, 9, 1880–1891.
- 110E. M. Jacoby, I. Schlichting, C. B. Lantwin, W. Kabsch, R. L. Krauth-Siegel, Proteins Struct. Funct. Genet. 1996, 24, 73–80.
10.1002/(SICI)1097-0134(199601)24:1<73::AID-PROT5>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 111
- 111aH.-J. Schneider, Chem. Soc. Rev. 1994, 23, 227–234;
- 111bY. Xu, Y. Nakajima, K. Ito, H. Zheng, H. Oyama, U. Heiser, T. Hoffmann, U.-T. Gärtner, H.-U. Demuth, T. Yoshimoto, J. Mol. Biol. 2008, 375, 708–719.
- 112S. Patterson, M. S. Alphey, D. C. Jones, E. J. Shanks, I. P. Street, J. A. Frearson, P. G. Wyatt, I. H. Gilbert, A. H. Fairlamb, J. Med. Chem. 2011, 54, 6514–6530.
- 113
- 113aR. Fernandez-Gomez, M. Moutiez, M. Aumercier, G. Bethegnies, M. Luyckx, A. Ouaissi, A. Tartar, C. Sergheraert, Int. J. Antimicrob. Agents 1995, 6, 111–118;
- 113bS. Parveen, M. O. F. Khan, S. E. Austin, S. L. Croft, V. Yardley, P. Rock, K. T. Douglas, J. Med. Chem. 2005, 48, 8087–8097;
- 113cB. Stump, M. Kaiser, R. Brun, R. L. Krauth-Siegel, F. Diederich, ChemMedChem 2007, 2, 1708–1712;
- 113dC. Eberle, J. A. Burkhard, B. Stump, M. Kaiser, R. Brun, R. L. Krauth-Siegel, F. Diederich, ChemMedChem 2009, 4, 2034–2044.
- 114
- 114aI. D. Kuntz, K. Chen, K. A. Sharp, P. A. Kollman, Proc. Natl. Acad. Sci. USA 1999, 96, 9997–10002;
- 114bA. L. Hopkins, C. R. Groom, A. Alex, Drug Discovery Today 2004, 9, 430–431;
- 114cC. H. Reynolds, B. A. Tounge, S. D. Bembenek, J. Med. Chem. 2008, 51, 2432–2438.
- 115
- 115aP. D. Leeson, B. Springthorpe, Nat. Rev. Drug Discovery 2007, 6, 881–890;
- 115bJ. A. Arnott, S. L. Planey, Expert Opin. Drug Discovery 2012, 7, 863–875.
- 116T. Ryckmans, M. P. Edwards, V. A. Horne, A. M. Correia, D. R. Owen, L. R. Thompson, I. Tran, M. F. Tutt, T. Young, Bioorg. Med. Chem. Lett. 2009, 19, 4406–4409.
- 117
- 117aA. Straub, S. Roehrig, A. Hillisch, Angew. Chem. Int. Ed. 2011, 50, 4574–4590; Angew. Chem. 2011, 123, 4670–4686;
- 117bT. A. DeWald, R. C. Becker, J. Thromb. Thrombolysis 2014, 37, 217–233.
- 118
- 118aK. Schärer, M. Morgenthaler, R. Paulini, U. Obst-Sander, D. W. Banner, D. Schlatter, J. Benz, M. Stihle, F. Diederich, Angew. Chem. Int. Ed. 2005, 44, 4400–4404; Angew. Chem. 2005, 117, 4474–4479;
- 118bL. M. Salonen, C. Bucher, D. W. Banner, W. Haap, J.-L. Mary, J. Benz, O. Kuster, P. Seiler, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed. 2009, 48, 811–814; Angew. Chem. 2009, 121, 825–828.
- 119L. M. Salonen, M. C. Holland, P. S. J. Kaib, W. Haap, J. Benz, J.-L. Mary, O. Kuster, W. B. Schweizer, D. W. Banner, F. Diederich, Chem. Eur. J. 2012, 18, 213–222.
- 120
- 120aC. D. Tatko, M. L. Waters, J. Am. Chem. Soc. 2004, 126, 2028–2034;
- 120bR. M. Hughes, M. L. Waters, J. Am. Chem. Soc. 2005, 127, 6518–6519;
- 120cR. M. Hughes, K. R. Wiggins, S. Khorasanizadeh, M. L. Waters, Proc. Natl. Acad. Sci. USA 2007, 104, 11184–11188.
- 121
- 121aL. Anselm, D. W. Banner, J. Benz, K. G. Zbinden, J. Himber, H. Hilpert, W. Huber, B. Kuhn, J.-L. Mary, M. B. Otteneder, N. Panday, F. Ricklin, M. Stahl, S. Thomi, W. Haap, Bioorg. Med. Chem. Lett. 2010, 20, 5313–5319;
- 121bS. Roehrig, A. Straub, J. Pohlmann, T. Lampe, J. Pernerstorfer, K.-H. Schlemmer, P. Reinemer, E. Perzborn, J. Med. Chem. 2005, 48, 5900–5908;
- 121cM. R. Wiley, L. C. Weir, S. Briggs, N. A. Bryan, J. Buben, C. Campbell, N. Y. Chirgadze, R. C. Conrad, T. J. Craft, J. V. Ficorilli, J. B. Franciskovich, L. L. Froelich, D. S. Gifford-Moore, T. Goodson, D. K. Herron, V. J. Klimkowski, K. D. Kurz, J. A. Kyle, J. J. Masters, A. M. Ratz, G. Milot, R. T. Shuman, T. Smith, G. F. Smith, A. L. Tebbe, J. M. Tinsley, R. D. Towner, A. Wilson, Y. K. Yee, J. Med. Chem. 2000, 43, 883–899.
- 122H. Matter, M. Nazaré, S. Güssregen, D. W. Will, H. Schreuder, A. Bauer, M. Urmann, K. Ritter, M. Wagner, V. Wehner, Angew. Chem. Int. Ed. 2009, 48, 2911–2916; Angew. Chem. 2009, 121, 2955–2960.
- 123K. Padmanabhan, K. P. Padmanabhan, A. Tulinsky, C. H. Park, W. Bode, R. Huber, D. T. Blankenship, A. D. Cardin, W. Kisiel, J. Mol. Biol. 1993, 232, 947–966.
- 124B. Kuhn, J. E. Fuchs, M. Reutlinger, M. Stahl, N. R. Taylor, J. Chem. Inf. Model. 2011, 51, 3180–3198.
- 125S. N. Dorogovtsev, J. F. F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, Oxford, 2003.
10.1093/acprof:oso/9780198515906.001.0001 Google Scholar
- 126E. Perola, P. S. Charifson, J. Med. Chem. 2004, 47, 2499–2510.
- 127J. Bunzen, J. Iwasa, P. Bonakdarzadeh, E. Numata, K. Rissanen, S. Sato, M. Fujita, Angew. Chem. Int. Ed. 2012, 51, 3161–3163; Angew. Chem. 2012, 124, 3215–3217.
- 128M. Harder, B. Kuhn, F. Diederich, ChemMedChem 2013, 8, 397–404.
- 129A. J. Goodman, E. C. Breinlinger, C. M. McIntosh, L. N. Grimaldi, V. M. Rotello, Org. Lett. 2001, 3, 1531–1534.
- 130 Aspartic Acid Proteases as Therapeutic Targets (Eds.: ), Wiley-VCH, Weinheim, 2010.
- 131
- 131aC. Jensen, P. Herold, H. R. Brunner, Nat. Rev. Drug Discovery 2008, 7, 399–410;
- 131bR. L. Webb, N. Schiering, R. Sedrani, J. Maibaum, J. Med. Chem. 2010, 53, 7490–7520;
- 131cJ. Tamargo, J. López-Sendón, Nat. Rev. Drug Discovery 2011, 10, 536–555.
- 132
- 132aA. M. J. Wensing, N. M. van Maarseveen, M. Nijhuis, Antiviral Res. 2010, 85, 59–74;
- 132bH. C. Castro, P. A. Abreu, R. B. Geraldo, R. C. A. Martins, R. dos Santos, N. I. V. Loureiro, L. M. Cabral, C. R. Rodrigues, J. Mol. Recognit. 2011, 24, 165–181;
- 132cA. Engelman, P. Cherepanov, Nat. Rev. Microbiol. 2012, 10, 279–290.
- 133
- 133aA. K. Ghosh, M. Brindisi, J. Tang, J. Neurochem. 2012, 120, 71–83;
- 133bT. Silva, J. Reis, J. Teixeira, F. Borges, Ageing Res. Rev. 2014, 15, 116–145;
- 133cR. Vassar, P.-H. Kuhn, C. Haass, M. E. Kennedy, L. Rajendran, P. C. Wong, S. F. Lichtenthaler, J. Neurochem. 2014, 130, 4–28.
- 134
- 134aK. Ersmark, B. Samuelsson, A. Hallberg, Med. Res. Rev. 2006, 26, 626–666;
- 134bJ. Sabotič, J. Kos, Appl. Microbiol. Biotechnol. 2012, 93, 1351–1375.
- 135P. Bhaumik, A. Gustchina, A. Wlodawer, Biochim. Biophys. Acta Proteins Proteomics 2012, 1824, 207–223.
- 136A search in the PDB for plasmepsins found 30 structures (July 2014), whereby 2 belong to PM I, 19 to PM II, 5 to the histo-aspartic protease (HAP), and 4 to PM IV:
- 136asee Ref. [135];
- 136bK. Jaudzems, K. Tars, G. Maurops, N. Ivdra, M. Otikovs, J. Leitans, I. Kanepe-Lapsa, I. Domraceva, I. Mutule, P. Trapencieris, M. J. Blackman, A. Jirgensons, ACS Med. Chem. Lett. 2014, 5, 373–377.
- 137L. Prade, A. F. Jones, C. Boss, S. Richard-Bildstein, S. Meyer, C. Binkert, D. Bur, J. Biol. Chem. 2005, 280, 23837–23843.
- 138
- 138aN. K. Bernstein, M. M. Cherney, H. Loetscher, R. G. Ridley, M. N. G. James, Nat. Struct. Biol. 1999, 6, 32–37;
- 138bD. A. Carcache, S. R. Hörtner, P. Seiler, F. Diederich, A. Dorn, H. P. Märki, C. Binkert, D. Bur, Helv. Chim. Acta 2003, 86, 2173–2191;
- 138cD. A. Carcache, S. R. Hörtner, A. Bertogg, F. Diederich, A. Dorn, H. P. Märki, C. Binkert, D. Bur, Helv. Chim. Acta 2003, 86, 2192–2209;
- 138dC. Boss, O. Corminboeuf, C. Grisostomi, S. Meyer, A. F. Jones, L. Prade, C. Binkert, W. Fischli, T. Weller, D. Bur, ChemMedChem 2006, 1, 1341–1345;
- 138eF. Hof, A. Schütz, C. Fäh, S. Meyer, D. Bur, J. Liu, D. E. Goldberg, F. Diederich, Angew. Chem. Int. Ed. 2006, 45, 2138–2141; Angew. Chem. 2006, 118, 2193–2196.
- 139
- 139aM. Zürcher, T. Gottschalk, S. Meyer, D. Bur, F. Diederich, ChemMedChem 2008, 3, 237–240;
- 139bM. Zürcher, F. Hof, L. Barandun, A. Schütz, W. B. Schweizer, S. Meyer, D. Bur, F. Diederich, Eur. J. Org. Chem. 2009, 1707–1719.
- 140V. Aureggi, V. Ehmke, J. Wieland, W. B. Schweizer, B. Bernet, D. Bur, S. Meyer, M. Rottmann, C. Freymond, R. Brun, B. Breit, F. Diederich, Chem. Eur. J. 2013, 19, 155–164.
- 141A. P. Benfield, M. G. Teresk, H. R. Plake, J. E. DeLorbe, L. E. Millspaugh, S. F. Martin, Angew. Chem. Int. Ed. 2006, 45, 6830–6835; Angew. Chem. 2006, 118, 6984–6989.
- 142
- 142aC. Fäh, L. A. Hardegger, L. Baitsch, W. B. Schweizer, S. Meyer, D. Bur, F. Diederich, Org. Biomol. Chem. 2009, 7, 3947–3957;
- 142bC. Fäh, R. Mathys, L. A. Hardegger, S. Meyer, D. Bur, F. Diederich, Eur. J. Org. Chem. 2010, 4617–4629.
- 143
- 143aC. R. Caffrey, D. Steverding, Expert Opin. Drug Discovery 2008, 3, 173–186;
- 143bT. Schirmeister, A. Welker, Pharm. Unserer Zeit 2009, 38, 564–574;
- 143cA. Cavalli, M. L. Bolognesi, J. Med. Chem. 2009, 52, 7339–7359;
- 143dC. Teixeira, J. R. B. Gomes, P. Gomes, Curr. Med. Chem. 2011, 18, 1555–1572.
- 144
- 144aR. Ettari, L. Tamborini, I. C. Angelo, N. Micale, A. Pinto, C. De Micheli, P. Conti, J. Med. Chem. 2013, 56, 5637–5658;
- 144bU. R. Mane, R. C. Gupta, S. S. Nadkarni, R. R. Giridhar, P. P. Naik, M. R. Yadav, Expert Opin. Ther. Pat. 2013, 23, 165–187.
- 145
- 145aS. Scory, C. R. Caffrey, Y.-D. Stierhof, A. Ruppel, D. Steverding, Exp. Parasitol. 1999, 91, 327–333;
- 145bB. R. Shenai, P. S. Sijwali, A. Singh, P. J. Rosenthal, J. Biol. Chem. 2000, 275, 29000–29010.
- 146
- 146aV. Ehmke, C. Heindl, M. Rottmann, C. Freymond, W. B. Schweizer, R. Brun, A. Stich, T. Schirmeister, F. Diederich, ChemMedChem 2011, 6, 273–278;
- 146bV. Ehmke, F. Kilchmann, C. Heindl, K. Cui, J. Huang, T. Schirmeister, F. Diederich, MedChemComm 2011, 2, 800–804;
- 146cV. Ehmke, J. E. Q. Quinsaat, P. Rivera-Fuentes, C. Heindl, C. Freymond, M. Rottmann, R. Brun, T. Schirmeister, F. Diederich, Org. Biomol. Chem. 2012, 10, 5764–5768;
- 146dV. Ehmke, E. Winkler, D. W. Banner, W. Haap, W. B. Schweizer, M. Rottmann, M. Kaiser, C. Freymond, T. Schirmeister, F. Diederich, ChemMedChem 2013, 8, 967–975.
- 147To date, two crystal structures of rhodesain have been published in the PDB (July 2014):
- 147aI. D. Kerr, J. H. Lee, C. J. Farady, R. Marion, M. Rickert, M. Sajid, K. C. Pandey, C. R. Caffrey, J. Legac, E. Hansell, J. H. McKerrow, C. S. Craik, P. J. Rosenthal, L. S. Brinen, J. Biol. Chem. 2009, 284, 25697–25703 (PDB ID: 2P7U);
- 147bI. D. Kerr, P. Wu, R. Marion-Tsukamaki, Z. B. Mackey, L. S. Brinen, PLoS Neglected Trop. Dis. 2010, 4, e 701 (PDB ID: 2P86).
- 148To date, five crystal structures of falcipain-2 have been published in the PDB (July 2014);
- 148aT. Hogg, K. Nagarajan, S. Herzberg, L. Chen, X. Shen, H. Jiang, M. Wecke, C. Blohmke, R. Hilgenfeld, C. L. Schmidt, J. Biol. Chem. 2006, 281, 25425–25437 (PDB ID: 2GHU);
- 148bS. X. Wang, K. C. Pandey, J. R. Somoza, P. S. Sijwali, T. Kortemme, L. S. Brinen, R. J. Fletterick, P. J. Rosenthal, J. H. McKerrow, Proc. Natl. Acad. Sci. USA 2006, 103, 11503–11508 (PDB ID: 1YVB);
- 148cS. X. Wang, K. C. Pandey, J. Scharfstein, J. Whisstock, R. K. Huang, J. Jacobelli, R. J. Fletterick, P. J. Rosenthal, M. Abrahamson, L. S. Brinen, A. Rossi, A. Sali, J. H. McKerrow, Structure 2007, 15, 535–543 (PDB ID: 2OUL);
- 148dI. D. Kerr, J. H. Lee, K. C. Pandey, A. Harrison, M. Sajid, P. J. Rosenthal, L. S. Brinen, J. Med. Chem. 2009, 52, 852–857 (PDB ID: 3BPF);
- 148eG. Hansen, A. Heitmann, T. Witt, H. Li, H. Jiang, X. Shen, V. T. Heussler, A. Rennenberg, R. Hilgenfeld, Structure 2011, 19, 919–929 (PDB ID: 3PNR).
- 149
- 149aM. K. Ramjee, N. S. Flinn, T. P. Pemberton, M. Quibell, Y. Wang, J. P. Watts, Biochem. J. 2006, 399, 47–57.
- 150K. Merz, V. Vasylyeva, CrystEngComm 2010, 12, 3989–4002.
- 151
- 151aH.-J. Schneider, Angew. Chem. Int. Ed. Engl. 1997, 36, 1072–1073; Angew. Chem. 1997, 109, 1116–1117;
- 151bM. Roman, C. Cannizzo, T. Pinault, B. Isare, B. Andrioletti, P. van der Schoot, L. Bouteiller, J. Am. Chem. Soc. 2010, 132, 16818–16824;
- 151c“Weak Intermolecular Interactions: A Supermolecular Approach”: M. Waller, S. Grimme in Handbook of Computational Chemistry, Vol. 2 (Ed.: ), Springer, Dordrecht, 2012, p. 443–466.
10.1007/978-94-007-0711-5_12 Google Scholar
- 152
- 152aA. Gavezzotti, J. Phys. Chem. 1990, 94, 4319–4325;
- 152bF. H. Allen, C. A. Baalham, J. P. M. Lommerse, P. R. Raithby, Acta Crystallogr. Sect. B 1998, 54, 320–329;
- 152cF. H. Allen, W. D. S. Motherwell, Acta Crystallogr. Sect. B 2002, 58, 407–422.
- 153
- 153aW. Bolton, Acta Crystallogr. 1964, 17, 147–152;
- 153bW. Bolton, Acta Crystallogr. 1965, 18, 5–10.
- 154H. A. Bent, Chem. Rev. 1968, 68, 587–648.
- 155K. J. Kamer, A. Choudhary, R. T. Raines, J. Org. Chem. 2013, 78, 2099–2103.
- 156H. B. Bürgi, J. D. Dunitz, Acc. Chem. Res. 1983, 16, 153–161.
- 157
- 157aA. Choudhary, R. T. Raines, Protein Sci. 2011, 20, 1077–1081;
- 157bG. J. Bartlett, R. W. Newberry, B. VanVeller, R. T. Raines, D. N. Woolfson, J. Am. Chem. Soc. 2013, 135, 18682–18688;
- 157cR. W. Newberry, G. J. Bartlett, B. VanVeller, D. N. Woolfson, R. T. Raines, Protein Sci. 2014, 23, 284–288.
- 158
- 158aH. Adams, F. J. Carver, C. A. Hunter, J. C. Morales, E. M. Seward, Angew. Chem. Int. Ed. Engl. 1996, 35, 1542–1544; Angew. Chem. 1996, 108, 1628–1631;
- 158bS. L. Cockroft, C. A. Hunter, Chem. Soc. Rev. 2007, 36, 172–188;
- 158cP. J. Carter, G. Winter, A. J. Wilkinson, A. R. Fersht, Cell 1984, 38, 835–840.
- 159
- 159aS. Paliwal, S. Geib, C. S. Wilcox, J. Am. Chem. Soc. 1994, 116, 4497–4498;
- 159bE.-i. Kim, S. Paliwal, C. S. Wilcox, J. Am. Chem. Soc. 1998, 120, 11192–11193;
- 159cB. Bhayana, C. S. Wilcox, Angew. Chem. Int. Ed. 2007, 46, 6833–6836; Angew. Chem. 2007, 119, 6957–6960.
- 160F. R. Fischer, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed. 2007, 46, 8270–8273; Angew. Chem. 2007, 119, 8418–8421.
- 161F. Hof, D. M. Scofield, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed. 2004, 43, 5056–5059; Angew. Chem. 2004, 116, 5166–5169.
- 162F. R. Fischer, P. A. Wood, F. H. Allen, F. Diederich, Proc. Natl. Acad. Sci. USA 2008, 105, 17290–17294.
- 163H. Gardarsson, W. B. Schweizer, N. Trapp, F. Diederich, Chem. Eur. J. 2014, 20, 4608–4616.
- 164C. Fäh, L. A. Hardegger, M.-O. Ebert, W. B. Schweizer, F. Diederich, Chem. Commun. 2010, 46, 67–69.
- 165
- 165aK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 165b“Fluorine in Pharmaceutical and Medicinal Chemistry”: V. Gouverneur, K. Müller in Molecular Medicine and Medicinal Chemistry, Vol. 6 (Eds.: ), Imperial College Press, London, 2012.
- 166B. Kuhn, P. A. Kollman, J. Am. Chem. Soc. 2000, 122, 3909–3916.
- 167M. Di Nisio, S. Middeldorp, H. R. Büller, N. Engl. J. Med. 2005, 353, 1028–1040.
- 168
- 168aM. A. Fabian, W. H. Biggs, D. K. Treiber, C. E. Atteridge, M. D. Azimioara, M. G. Benedetti, T. A. Carter, P. Ciceri, P. T. Edeen, M. Floyd, J. M. Ford, M. Galvin, J. L. Gerlach, R. M. Grotzfeld, S. Herrgard, D. E. Insko, M. A. Insko, A. G. Lai, J.-M. Lelias, S. A. Mehta, Z. V. Milanov, A. M. Velasco, L. M. Wodicka, H. K. Patel, P. P. Zarrinkar, D. J. Lockhart, Nat. Biotechnol. 2005, 23, 329–336;
- 168bY. Liu, N. S. Gray, Nat. Chem. Biol. 2006, 2, 358–364.
- 169E. Jabbour, J. Cortes, H. Kantarjian, J. Core Evid. 2009, 4, 207–213.
- 170E. Weisberg, P. W. Manley, W. Breitenstein, J. Brüggen, S. W. Cowan-Jacob, A. Ray, B. Huntly, D. Fabbro, G. Fendrich, E. Hall-Meyers, A. L. Kung, J. Mestan, G. Q. Daley, L. Callahan, L. Catley, C. Cavazza, A. Mohammed, D. Neuberg, R. D. Wright, D. G. Gilliland, J. D. Griffin, Cancer Cell 2005, 7, 129–141.
- 171
- 171aN. Ramasubbu, R. Parthasarathy, P. Murray-Rust, J. Am. Chem. Soc. 1986, 108, 4308–4314;
- 171bJ. P. M. Lommerse, A. J. Stone, R. Taylor, F. H. Allen, J. Am. Chem. Soc. 1996, 118, 3108–3116;
- 171cP. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Ed. 2008, 47, 6114–6127; Angew. Chem. 2008, 120, 6206–6220.
- 172G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem. 2013, 85, 1711–1713.
- 173T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291–296.
- 174
- 174aM. Palusiak, J. Mol. Struct. THEOCHEM 2010, 945, 89–92;
- 174bL. P. Wolters, M. Bickelhaupt, ChemistryOpen 2012, 1, 96–105.
- 175
- 175aJ. W. Zou, Y. J. Jiang, M. Guo, G. X. Hu, B. Zhang, H. C. Liu, Q. S. Yu, Chem. Eur. J. 2005, 11, 740–751;
- 175bY.-X. Lu, J.-W. Zou, Y.-H. Wang, Y.-J. Jiang, Q.-S. Yu, J. Phys. Chem. A 2007, 111, 10781–10788;
- 175cK. E. Riley, K. M. Merz, J. Phys. Chem. A 2007, 111, 1688–1694;
- 175dK. E. Riley, P. Hobza, J. Chem. Theory Comput. 2008, 4, 232–242;
- 175eO. A. Syzgantseva, V. Tognetti, L. Joubert, J. Phys. Chem. A 2013, 117, 8969–8980.
- 176
- 176aK. E. Riley, J. S. Murray, J. Fanfrlík, J. řezáč, R. J. Solá, M. C. Concha, F. M. Ramos, P. Politzer, J. Mol. Model. 2011, 17, 3309–3318;
- 176bA. Bauzá, D. Quiñonero, A. Frontera, P. M. Deyà, Phys. Chem. Chem. Phys. 2011, 13, 20371–20379;
- 176cK. E. Riley, J. S. Murray, J. Fanfrlík, J. řezáč, R. J. Solá, M. C. Concha, F. M. Ramos, P. Politzer, J. Mol. Model. 2013, 19, 4651–4659.
- 177
- 177aO. Hassel, J. Hvoslef, Acta Chem. Scand. 1954, 8, 873;
- 177bO. Hassel, Science 1970, 170, 497–502.
- 178
- 178aP. Metrangolo, G. Resnati, Chem. Eur. J. 2001, 7, 2511–2519;
10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 178bP. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 2005, 38, 386–395;
- 178c“Halogen Bonding in Crystal Engineering”: P. Metrangolo, G. Resnati, T. Pilati, S. Biella in Halogen Bonding, Series: Structure and Bonding, Vol. 126 (Eds.: ), Springer, Berlin, 2008, pp. 105–136;
10.1007/430_2007_060 Google Scholar
- 178dP. Metrangolo, G. Resnati, Cryst. Growth Des. 2012, 12, 5835–5838.
- 179G. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311–2327; Angew. Chem. 1995, 107, 2541–2558.
- 180
- 180aN. S. Goroff, S. M. Curtis, J. A. Webb, F. W. Fowler, J. W. Lauher, Org. Lett. 2005, 7, 1891–1893;
- 180bA. Sun, J. W. Lauher, N. S. Goroff, Science 2006, 312, 1030–1034.
- 181
- 181aA. Priimagi, M. Saccone, G. Cavallo, A. Shishido, T. Pilati, P. Metrangolo, G. Resnati, Adv. Mater. 2012, 24, OP 345–OP352;
- 181bA. Priimagi, G. Cavallo, A. Forni, M. Gorynsztejn-Leben, M. Kaivola, P. Metrangolo, R. Milani, A. Shishido, T. Pilati, G. Resnati, G. Terraneo, Adv. Funct. Mater. 2012, 22, 2572–2579;
- 181cA. Priimagi, G. Cavallo, P. Metrangolo, G. Resnati, Acc. Chem. Res. 2013, 46, 2686–2695.
- 182
- 182aP. Politzer, J. S. Murray, M. C. Concha, J. Mol. Model. 2007, 13, 643–650;
- 182bK. E. Riley, J. S. Murray, P. Politzer, M. C. Concha, P. Hobza, J. Chem. Theory Comput. 2008, 5, 155–163;
- 182cP. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2010, 12, 7748–7757.
- 183
- 183aS. Güssregen, H. Matter, G. Hessler, M. Müller, F. Schmidt, T. Clark, J. Chem. Inf. Model. 2012, 52, 2441–2453;
- 183bM. Kolář, P. Hobza, J. Chem. Theory Comput. 2012, 8, 1325–1333.
- 184
- 184aM. Erdelyi, Chem. Soc. Rev. 2012, 41, 3547–3557;
- 184bT. M. Beale, M. G. Chudzinski, M. G. Sarwar, M. S. Taylor, Chem. Soc. Rev. 2013, 42, 1667–1680.
- 185P. L. Wash, M. Shihong, U. Obst, J. Rebek, Jr., J. Am. Chem. Soc. 1999, 121, 7973–7974.
- 186
- 186aM. G. Sarwar, B. Dragisic, S. Sagoo, M. S. Taylor, Angew. Chem. Int. Ed. 2010, 49, 1674–1677; Angew. Chem. 2010, 122, 1718–1721;
- 186bA. Vargas Jentzsch, D. Emery, J. Mareda, P. Metrangolo, G. Resnati, S. Matile, Angew. Chem. Int. Ed. 2011, 50, 11675–11678; Angew. Chem. 2011, 123, 11879–11882.
- 187
- 187aN. L. Kilah, M. D. Wise, C. J. Serpell, A. L. Thompson, N. G. White, K. E. Christensen, P. D. Beer, J. Am. Chem. Soc. 2010, 132, 11893–11895;
- 187bL. C. Gilday, T. Lang, A. Caballero, P. J. Costa, V. Félix, P. D. Beer, Angew. Chem. Int. Ed. 2013, 52, 4356–4360; Angew. Chem. 2013, 125, 4452–4456;
- 187cS. Castro-Fernández, I. R. Lahoz, A. L. Llamas-Saiz, J. L. Alonso-Gómez, M.-M. Cid, A. Navarro-Vázquez, Org. Lett. 2014, 16, 1136–1139;
- 187dB. R. Mullaney, A. L. Thompson, P. D. Beer, Angew. Chem. Int. Ed. 2014, 53, 11458–11462; Angew. Chem. 2014, 126, 11642–11646.
- 188
- 188aS. M. Walter, F. Kniep, E. Herdtweck, S. M. Huber, Angew. Chem. Int. Ed. 2011, 50, 7187–7191; Angew. Chem. 2011, 123, 7325–7329;
- 188bF. Kniep, S. H. Jungbauer, Q. Zhang, S. M. Walter, S. Schindler, I. Schnapperelle, E. Herdtweck, S. M. Huber, Angew. Chem. Int. Ed. 2013, 52, 7028–7032; Angew. Chem. 2013, 125, 7166–7170;
- 188cW. He, Y. C. Ge, C.-H. Tan, Org. Lett. 2014, 16, 3244–3247.
- 189
- 189aD. W. Larsen, A. L. Allred, J. Phys. Chem. 1965, 69, 2400–2401;
- 189bC. Laurence, M. Queignec-Cabanetos, T. Dziembowska, R. Queignec, B. Wojtkowiak, J. Chem. Soc. Perkin Trans. 2 1982, 1605–1610;
- 189cC. Laurence, M. Queignec-Cabanetos, B. Wojtkowiak, Can. J. Chem. 1983, 61, 135–138;
- 189dS. C. Blackstock, J. P. Lorand, J. K. Kochi, J. Org. Chem. 1987, 52, 1451–1460.
- 190aP. Metrangolo, W. Panzeri, F. Recupero, G. Resnati, J. Fluorine Chem. 2002, 114, 27–33;
- 190bS. V. Rosokha, I. S. Neretin, T. Y. Rosokha, J. Hecht, J. K. Kochi, Heteroat. Chem. 2006, 17, 449–459;
- 190cS. Libri, N. A. Jasim, R. N. Perutz, L. Brammer, J. Am. Chem. Soc. 2008, 130, 7842–7844.
- 191
- 191aR. Cabot, C. Hunter, Chem. Commun. 2009, 2005–2007;
- 191bM. G. Sarwar, B. Dragisic, L. J. Salsberg, C. Gouliaras, M. S. Taylor, J. Am. Chem. Soc. 2010, 132, 1646–1653;
- 191cD. A. Smith, L. Brammer, C. A. Hunter, R. N. Perutz, J. Am. Chem. Soc. 2014, 136, 1288–1291.
- 192O. Dumele, D. Wu, N. Trapp, N. Goroff, F. Diederich, Org. Lett. 2014, 16, 4722–4725.
- 193P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794.
- 194
- 194aF. H. Allen, O. Kennard, R. Taylor, Acc. Chem. Res. 1983, 16, 146–153;
- 194bR. Taylor, O. Kennard, W. Versichel, Acta Crystallogr. Sect. B 1984, 40, 280–288.
- 195
- 195aY. Lu, T. Shi, Y. Wang, H. Yang, X. Yan, X. Luo, H. Jiang, W. Zhu, J. Med. Chem. 2009, 52, 2854–2862;
- 195bY. Lu, Y. Wang, W. Zhu, Phys. Chem. Chem. Phys. 2010, 12, 4543–4551;
- 195cR. Wilcken, M. O. Zimmermann, A. Lange, S. Zahn, F. M. Boeckler, J. Comput.-Aided Mol. Des. 2012, 26, 935–945;
- 195dR. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem. 2013, 56, 1363–1388.
- 196A. R. Voth, P. Khuu, K. Oishi, P. S. Ho, Nat. Chem. 2009, 1, 74–79.
- 197
- 197aS. D. Barrett, C. M. Biwersi, M. D. Kaufman, H. Tecle, J. S. Warmus, (Warner-Lambert Company), US 2005176820(A1), 2005;
- 197bJ. A. Spicer, G. W. Rewcastle, M. D. Kaufman, S. L. Black, M. S. Plummer, W. A. Denny, J. Quin III, A. B. Shahripour, S. D. Barrett, C. E. Whitehead, J. B. J. Milbank, J. F. Ohren, R. C. Gowan, C. Omer, H. S. Camp, N. Esmaeil, K. Moore, J. S. Sebolt-Leopold, S. Pryzbranowski, R. L. Merriman, D. F. Ortwine, J. S. Warmus, C. M. Flamme, A. G. Pavlovsky, H. Tecle, J. Med. Chem. 2007, 50, 5090–5102;
- 197cH. Tecle, J. Shao, Y. Li, M. Kothe, S. Kazmirski, J. Penzotti, Y.-H. Ding, J. Ohren, D. Moshinsky, R. Coli, N. Jhawar, E. Bora, S. Jacques-O’Hagan, J. Wu, Bioorg. Med. Chem. Lett. 2009, 19, 226–229 (PDB ID: 3DY7);
- 197dT. O. Fischmann, C. K. Smith, T. W. Mayhood, J. E. Myers, Jr., P. Reichert, A. Mannarino, D. Carr, H. Zhu, J. Wong, R.-S. Yang, H. V. Le, V. S. Madison, Biochemistry 2009, 48, 2661–2674 (PDB ID: 3EQC);
- 197eY. Isshiki, Y. Kohchi, H. Iikura, Y. Matsubara, K. Asoh, T. Murata, M. Kohchi, E. Mizuguchi, S. Tsujii, K. Hattori, T. Miura, Y. Yoshimura, S. Aida, M. Miwa, R. Saitoh, N. Murao, H. Okabe, C. Belunis, C. Janson, C. Lukacs, V. Schück, N. Shimma, Bioorg. Med. Chem. Lett. 2011, 21, 1795–1801 (PDB ID: 3ORN).
- 198C. Frémin, S. Meloche, J. Hemat. Onc. 2010, 3, 8–19.
- 199http://clinicaltrials.gov/show/NCT01933932, verified in July 2014, Clinical Trial ID: NCT01933932.
- 200
- 200aS. Sarno, H. Reddy, F. Meggio, M. Ruzzene, S. P. Davies, A. Donella-Deana, D. Shugar, L. A. Pinna, FEBS Lett. 2001, 496, 44–48;
- 200bE. De Moliner, N. R. Brown, L. N. Johnson, Eur. J. Biochem. 2003, 270, 3174–3181.
- 201S. Baumli, J. A. Endicott, L. N. Johnson, Chem. Biol. 2010, 17, 931–936.
- 202L. J. Core, J. T. Lis, Science 2008, 319, 1791–1792.
- 203A. Kunfermann, M. Witschel, B. Illarionov, R. Martin, M. Rottmann, H. W. Höffken, M. Seet, W. Eisenreich, H.-J. Knölker, M. Fischer, A. Bacher, M. Groll, F. Diederich, Angew. Chem. 2014, 126, 2267–2272;
10.1002/ange.201309557 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 2235–2239.
- 204M. Witschel, F. Röhl, R. Niggeweg, T. Newton, Pest Manage. Sci. 2013, 69, 559–563.
- 205M. Witschel, M. Rottmann, M. Kaiser, R. Brun, PLoS Neglected Trop. Dis. 2012, 6, e 1805.
- 206P. R. Burkholder, R. M. Pfister, F. H. Leitz, Appl. Microbiol. 1966, 14, 649–653.
- 207
- 207aS. Grimme, J. Chem. Phys. 2003, 118, 9095–9102;
- 207bM. O. Sinnokrot, C. D. Sherrill, J. Am. Chem. Soc. 2004, 126, 7690–7697;
- 207cE. C. Lee, D. Kim, P. Jurečka, P. Tarakeshwar, P. Hobza, K. S. Kim, J. Phys. Chem. A 2007, 111, 3446–3457;
- 207dJ. M. Sanders, J. Phys. Chem. A 2010, 114, 9205–9211.
- 208Since submission of the Review, several relevant new articles have appeared:
- 208a“New Insights into the Role of Water in Biological Function: Studying Solvated Biomolecules Using Terahertz Absorption Spectroscopy in Conjunction with Molecular Dynamics Simulations”: V. C. Nibali, M. Havenith, J. Am. Chem. Soc. 2014, 136, 12800–12807;
- 208b“Medicinal Chemistry of Catechol O-Methyltransferase (COMT) Inhibitors and Their Therapeutic Utility”: L. E. Kiss, P. Soares-da-Silva, J. Med. Chem. 2014, 57, 8692–8717;
- 208cA review on kinase inhibitors: “Exploring the Scaffold Universe of Kinase Inhibitors”: Y. Hu, J. Bajorath, J. Med. Chem. 2014, DOI: ;
- 208d“Iodide-Induced Shuttling of a Halogen- and Hydrogen-Bonding Two-Station Rotaxane”: A. Caballero, L. Swan, F. Zapata, P. D. Beer, Angew. Chem. Int. Ed. 2014, 53, 11854–11858; Angew. Chem. 2014, 126, 12048–12052.