Screw-Dislocation-Driven Bidirectional Spiral Growth of Bi2Se3 Nanoplates†
Awei Zhuang
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorJia-Jun Li
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorYou-Cheng Wang
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Search for more papers by this authorXin Wen
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorYue Lin
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Search for more papers by this authorProf. Bin Xiang
Center of Advanced Nanocatalysis (CAN-USTC) and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorProf. Xiaoping Wang
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Jie Zeng
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Center of Advanced Nanocatalysis (CAN-USTC) and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/Search for more papers by this authorAwei Zhuang
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorJia-Jun Li
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorYou-Cheng Wang
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Search for more papers by this authorXin Wen
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorYue Lin
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Search for more papers by this authorProf. Bin Xiang
Center of Advanced Nanocatalysis (CAN-USTC) and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorProf. Xiaoping Wang
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Jie Zeng
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/
Center of Advanced Nanocatalysis (CAN-USTC) and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China)
Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://zengnano.ustc.edu.cn/Search for more papers by this authorThis research was supported by MOST of China (2014CB932700 and 2011CB921403), the NSFC (Grant Nos. 21203173, 51371164, and J1030412), Strategic Priority Research Program B of the CAS (Grant No. XDB01020000), and Fundamental Research Funds for the Central Universities (WK2340000050 and WK2060190025).
Graphical Abstract
Interesting faces with chiseled features: No longer limited to nanoribbons and smooth nanoplates, Bi2Se3 nanostructures in the form of spiral-type nanoplates with a bipyramid-like shape characterized by two sets of centrosymmetric helical fringes on the top and bottom faces were formed by a bidirectional growth process. Other evidence for the unique structure and growth mode include herringbone contours, spiral arms, and hollow cores (see picture).
Abstract
Bi2Se3 attracts intensive attention as a typical thermoelectric material and a promising topological insulator material. However, previously reported Bi2Se3 nanostructures are limited to nanoribbons and smooth nanoplates. Herein, we report the synthesis of spiral Bi2Se3 nanoplates and their screw-dislocation-driven (SDD) bidirectional growth process. Typical products showed a bipyramid-like shape with two sets of centrosymmetric helical fringes on the top and bottom faces. Other evidence for the unique structure and growth mode include herringbone contours, spiral arms, and hollow cores. Through the manipulation of kinetic factors, including the precursor concentration, the pH value, and the amount of reductant, we were able to tune the supersaturation in the regime of SDD to layer-by-layer growth. Nanoplates with preliminary dislocations were discovered in samples with an appropriate supersaturation value and employed for investigation of the SDD growth process.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201403530_sm_miscellaneous_information.pdf771.5 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. A. Morin, M. J. Bierman, J. Tong, S. Jin, Science 2010, 328, 476.
- 2aM. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008, 320, 1060;
- 2bJ. Zhu, H. Peng, A. F. Marshall, D. M. Barnett, W. D. Nix, Y. Cui, Nat. Nanotechnol. 2008, 3, 477;
- 2cF. Meng, S. Jin, Nano Lett. 2012, 12, 234.
- 3
- 3aY. K. A. Lau, D. J. Chernak, M. J. Bierman, S. Jin, J. Am. Chem. Soc. 2009, 131, 16461;
- 3bH. Wu, F. Meng, L. Li, S. Jin, G. Zheng, ACS Nano 2012, 6, 4461;
- 3cF. Meng, S. A. Morin, A. Forticaux, S. Jin, Acc. Chem. Res. 2013, 46, 1616.
- 4I. V. Markov, Crystal Growth For Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 1st ed., World Scientific Publishing, Singapore, 1995.
10.1142/2145 Google Scholar
- 5
- 5aS. Iijima, Nature 1991, 354, 56;
- 5bS. Jin, M. J. Bierman, S. A. Morin, J. Phys. Chem. Lett. 2010, 1, 1472;
- 5cS. A. Morin, S. Jin, Nano Lett. 2010, 10, 3459;
- 5dF. Meng, S. A. Morin, S. Jin, J. Am. Chem. Soc. 2011, 133, 8408;
- 5eS. Hacialioglu, F. Meng, S. Jin, Chem. Commun. 2012, 48, 1174.
- 6
- 6aB. W. Jacobs, M. A. Crimp, K. McElroy, V. M. Ayres, Nano Lett. 2008, 8, 4353;
- 6bF. Ding, A. R. Harutyunyan, B. I. Yakobson, Proc. Natl. Acad. Sci. USA 2009, 106, 2506;
- 6cD. Maestre, D. Haeussler, A. Cremades, W. Jaeger, J. Piqueras, Cryst. Growth Des. 2011, 11, 1117;
- 6dD. Maestre, D. Haussler, A. Cremades, W. Jager, J. Piqueras, J. Phys. Chem. C 2011, 115, 18083;
- 6eR. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, B. Maruyama, Nat. Mater. 2012, 11, 213.
- 7S. A. Morin, A. Forticaux, M. J. Bierman, S. Jin, Nano Lett. 2011, 11, 4449.
- 8
- 8aE. Suito, N. Uyeda, J. Electron Microsc. 1960, 8, 25;
- 8bE. Suito, N. Uyeda, Bull. Inst. Chem. Res. Kyoto Univ. 1965, 42, 511.
- 9
- 9aY. Sun, H. Cheng, S. Gao, Q. Liu, Z. Sun, C. Xiao, C. Wu, S. Wei, Y. Xie, J. Am. Chem. Soc. 2012, 134, 20294;
- 9bY. Min, J. W. Roh, H. Yang, M. Park, S. I. Kim, S. Hwang, S. M. Lee, K. H. Lee, U. Jeong, Adv. Mater. 2013, 25, 1425.
- 10
- 10aH. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 2009, 5, 438;
- 10bY. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan, Nat. Phys. 2009, 5, 398;
- 10cJ. E. Moore, Nature 2010, 464, 194;
- 10dM. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 2010, 82, 3045;
- 10eX.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 2011, 83, 1057.
- 11D. S. Kong, W. H. Dang, J. J. Cha, H. Li, S. Meister, H. L. Peng, Z. F. Liu, Y. Cui, Nano Lett. 2010, 10, 2245.
- 12aH. L. Peng, K. Lai, D. S. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, Y. Cui, Nat. Mater. 2010, 9, 225;
- 12bD. S. Kong, J. C. Randel, H. L. Peng, J. J. Cha, S. Meister, K. Lai, Y. Chen, Z.-X. Shen, H. C. Manoharan, Y. Cui, Nano Lett. 2010, 10, 329;
- 12cJ. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M. S. Dresselhaus, Q. Xiong, Nano Lett. 2011, 11, 2407;
- 12dY. Min, G. D. Moon, B. S. Kim, B. Lim, J.-S. Kim, C. Y. Kang, U. Jeong, J. Am. Chem. Soc. 2012, 134, 2872;
- 12eD. S. Kong, K. J. Koski, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2013, 13, 632.
- 13
- 13aL. D. Alegria, M. D. Schroer, A. Chatterjee, G. R. Poirier, M. Pretko, S. K. Patel, J. R. Petta, Nano Lett. 2012, 12, 4711;
- 13bH. L. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, Z. F. Liu, Nat. Chem. 2012, 4, 281;
- 13cH. Li, J. Cao, W. Zheng, Y. Chen, D. Wu, W. Dang, K. Wang, H. L. Peng, Z. F. Liu, J. Am. Chem. Soc. 2012, 134, 6132;
- 13dY. Guo, M. Aisijiang, K. Zhang, W. Jiang, Y. Chen, W. Zheng, Z. Song, J. Cao, Z. F. Liu, H. L. Peng, Adv. Mater. 2013, 25, 5959.
- 14R. W. G. Wyckoff, Crystal Structures, Krieger, Malabar, FL, 1986.
- 15J. Zhou, J. Zeng, J. Grant, H. Wu, Y. Xia, Small 2011, 7, 3308.
- 16W. K. Burton, N. Cabrera, C. Frank, Philos. Trans. R. Soc. London Ser. A 1951, 243, 299.
- 17H. H. Teng, P. M. Dove, J. J. De Yoreo, Geochim. Cosmochim. Acta 2000, 64, 2255.
- 18A. Howie, M. J. Whelan, Proc. R. Soc. London Ser. A 1962, 267, 206.
- 19F. C. Frank, Acta Crystallogr. 1951, 4, 497.