Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide†
Dr. Yi Zheng
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
Search for more papers by this authorDr. Chenliang Su
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
Search for more papers by this authorDr. Jiong Lu
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
Search for more papers by this authorCorresponding Author
Prof. Kian Ping Loh
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)Search for more papers by this authorDr. Yi Zheng
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
Search for more papers by this authorDr. Chenliang Su
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
Search for more papers by this authorDr. Jiong Lu
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
Search for more papers by this authorCorresponding Author
Prof. Kian Ping Loh
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)Search for more papers by this authorK.P.L. acknowledges funding support from Singapore Millenium Foundation Research Horizon Award R-143-000-417-133 as well as Economic Development Board (SPORE, COY-15-EWI-RCFSA/N197-1). Discussion with Prof. A. H. Castro Neto is gratefully acknowledged.
Graphical Abstract
Ice to see you: The Stenocara beetle in the Namib Desert collects drinking droplets from the morning mist using its waxy wings, which are tailored with sub-millimeter hydrophilic humps. Superhydrophilic graphene oxide nanoflakes are biomimetic analogues of these humps and can seed ice nucleation on hydrophobic graphite. Various ice solids can thus be grown at ambient conditions (see images).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201302608_sm_miscellaneous_information.pdf1.7 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. A. Thiel, T. E. Madey, Surf. Sci. Rep. 1987, 7, 211–385.
- 2A. Verdaguer, G. M. Sacha, H. Bluhm, M. Salmeron, Chem. Rev. 2006, 106, 1478–1510.
- 3P. J. Feibelman, Phys. Today 2010, 63, 34–41.
- 4A. R. Parker, C. R. Lawrence, Nature 2001, 414, 33–34.
- 5L. Zhai, M. C. Berg, F. C. Cebeci, Y. Kim, J. M. Milwid, M. F. Rubner, R. E. Cohen, Nano Lett. 2006, 6, 1213–1217.
- 6W. F. Ostwald, Z. Phys. Chem. 1897, 22, 289–330.
- 7K. G. Libbrecht, Rep. Prog. Phys. 2005, 68, 855–895.
- 8 The Chemical Physics of Ice (Ed.: ), Cambridge Univ. Press, London, 1970.
- 9P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. A. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson, A. Nilsson, Science 2004, 304, 995–999.
- 10J. D. Smith, C. D. Cappa, K. R. Wilson, B. M. Messer, R. C. Cohen, R. J. Saykally, Science 2004, 306, 851–853.
- 11J. Hu, X. D. Xiao, D. F. Ogletree, M. Salmeron, Science 1995, 268, 267–269.
- 12K. B. Jinesh, J. W. M. Frenken, Phys. Rev. Lett. 2008, 101, 036101–036104.
- 13K. Xu, P. Gao, J. R. Heath, Science 2010, 329, 1188–1191.
- 14A. Hodgson, S. Haq, Surf. Sci. Rep. 2009, 64, 381–451.
- 15Y. Martin, C. C. Williams, H. K. Wickramasinghe, J. Appl. Phys. 1987, 61, 4723.
- 16T. O. Wehling, A. I. Lichtenstein, M. I. Katsnelson, Appl. Phys. Lett. 2008, 93, 202110.
- 17O. Leenaerts, B. Partoens, F. M. Peeters, Phys. Rev. B 2009, 79, 235440.
- 18F. Sciortino, A. Geiger, H. E. Stanley, Nature 1991, 354, 218–221.
- 19M. Tatarkhanov, D. F. Ogletree, F. Rose, T. Mitsui, E. Fomin, S. Maier, M. Rose, J. I. Cerda, M. Salmeron, J. Am. Chem. Soc. 2009, 131, 18425–18434.
- 20B. J. Murray, A. K. Bertram, Phys. Chem. Chem. Phys. 2006, 8, 186–192.
- 21T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar, C. G. Salzmann, Proc. Natl. Acad. Sci. USA 2012, 109, 1041–1045.
- 22 Kinetic der Phasenbildung (Ed.: ), Steinkopf, Leipzig, 1939.
- 23 Polymorphism in Molecular Crystals (Ed.: ), Clarendon Press, Oxford, 2002.
- 24M. Steiner, Angew. Chem. 2002, 114, 50–80;
10.1002/1521-3757(20020104)114:1<50::AID-ANGE50>3.0.CO;2-H Google ScholarAngew. Chem. Int. Ed. 2002, 41, 48–76.
- 25R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 1997, 388, 431–432.
- 26
- 26aT. Fukuma, M. J. Higgins, S. P. Jarvis, Phys. Rev. Lett. 2007, 98, 106101;
- 26bC. Barth, A. S. Foster, C. R. Henry, A. L. Shluger, Adv. Mater. 2011, 23, 477–501.
- 27A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183–191.
- 28A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109–162.