Signatures of the Rayleigh-Plateau Instability Revealed by Imposing Synthetic Perturbations on Nanometer-Sized Liquid Metals on Substrates†
Dr. Jason Fowlkes
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)
Search for more papers by this authorScott Horton
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)
University of Delaware, Newark, DE 19716 (USA)
Search for more papers by this authorDr. Miguel Fuentes-Cabrera
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)
Search for more papers by this authorCorresponding Author
Prof. Philip D. Rack
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)
Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN 37996-2200 (USA)
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)Search for more papers by this authorDr. Jason Fowlkes
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)
Search for more papers by this authorScott Horton
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)
University of Delaware, Newark, DE 19716 (USA)
Search for more papers by this authorDr. Miguel Fuentes-Cabrera
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)
Search for more papers by this authorCorresponding Author
Prof. Philip D. Rack
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)
Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN 37996-2200 (USA)
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 (USA)Search for more papers by this authorJ.D.F, P.D.R., and M.F.C. acknowledge support from the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division for supporting the portions of this work related to the design of molecular dynamics computational experiments and the analysis/models describing the results. M.F.C. acknowledges the computational resources of the UT/ORNL National Institute for Computational Sciences. S.R.H. was supported by an appointment under the Higher Education Research Experience (HERE) program, administered by the Oak Ridge Institute for Science and Education under contract number DE-AC05–06OR23100 between the U.S. Department of Energy and Oak Ridge Associated Universities.
Graphical Abstract
Multiscale patterning must be realized to harness the action of precisely arrayed nanoscale ensembles at practical meso- and microscales. Self- and directed assembly methods hold promise toward achieving arrays of nanoparticles with both precise interparticle spacing and tailored nanoparticle shape. Nanometer scale dewetting of 10 Å thick liquid copper films supported on graphite were investigated by molecular dynamics simulations.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
anie_201202113_sm_miscellaneous_information.pdf2.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. H. Lee, J. Y. Lin, T. W. Odom, Angew. Chem. 2010, 122, 3121–3124; Angew. Chem. Int. Ed. 2010, 49, 3057–3060.
- 2J. Henzie, M. H. Lee, T. W. Odom, Nat. Nanotechnol. 2007, 2, 549–554.
- 3A. J. Pasquale, B. M. Reinhard, L. Dal Negro, ACS Nano 2011, 5, 6578–6585.
- 4M. T. Rahman, N. N. Shams, C. H. Lai, J. Appl. Phys. 2009, 105, 07C112.
- 5A. I. Kuznetsov, A. B. Evlyukhin, M. R. Goncalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, B. N. Chichkov, ACS Nano 2011, 5, 4843–4849.
- 6S. Y. Chou, Q. F. Xia, Nat. Nanotechnol. 2008, 3, 369–369.
- 7
- 7aJ. D. Fowlkes, L. Kondic, J. Diez, Y. Y. Wu, P. D. Rack, Nano Lett. 2011, 11, 2478–2485;
- 7bL. Kondic, J. A. Diez, P. D. Rack, Y. F. Guan, J. D. Fowlkes, Phys. Rev. E 2009, 79, 026302;
- 7cY. Wu, J. D. Fowlkes, P. D. Rack, J. A. Diez, L. Kondic, Langmuir 2010, 26, 11972–11979;
- 7dY. Wu, J. D. Fowlkes, N. A. Roberts, J. A. Diez, L. Kondic, A. G. Gonzalez, P. D. Rack, Langmuir 2011, 27, 13314–13323;
- 7eY. Y. Wu, J. D. Fowlkes, P. D. Rack, J. A. Diez, L. Kondic, Langmuir 2010, 26, 11972–11979;
- 7fQ. F. Xia, S. Y. Chou, Nanotechnology 2009, 20, 285310;
- 7gJ. Lian, L. M. Wang, X. C. Sun, Q. K. Yu, R. C. Ewing, Nano Lett. 2006, 6, 1047–1052;
- 7hC. Favazza, R. Kalyanaraman, R. Sureshkumar, Nanotechnology 2006, 17, 4229–4234;
- 7iC. Favazza, H. Krishna, R. Sureshkumar, R. Kalyanaraman, Proc. Soc. Photo-Opt. Instrum. Eng. 2007, 6648, 64809;
- 7jC. Favazza, J. Trice, R. Kalyanaraman, R. Sureshkumar, Appl. Phys. Lett. 2007, 91, 043105;
- 7kC. Favazza, J. Trice, H. Krishna, R. Kalyanaraman, Proc. Soc. Photo-Opt. Instrum. Eng. 2008, 7039, 3907;
- 7lC. Favazza, J. Trice, H. Krishna, R. Kalyanaraman, Mater. Res. Soc. Symp. Proc. 2006, 890, 153–158;
- 7mC. Favazza, J. Trice, H. Krishna, R. Kalyanaraman, R. Sureshkumar, Appl. Phys. Lett. 2006, 88, 153118;
- 7nH. Krishna, C. Favazza, A. K. Gangopadhyay, R. Kalyanaraman, JOM 2008, 60, 37–42;
- 7oH. Krishna, R. Sachan, J. Strader, C. Favazza, M. Khenner, R. Kalyanaraman, Nanotechnology 2010, 21, 155601;
- 7pN. Shirato, H. Krishna, R. Kalyanaraman, J. Appl. Phys. 2010, 108, 024313;
- 7qJ. Trice, D. Thomas, C. Favazza, R. Sureshkumar, R. Kalyanaraman, Phys. Rev. B 2007, 75, 235439.
- 8
- 8aA. Vrij, J. T. Overbeek, J. Am. Chem. Soc. 1968, 90, 3074–3078;
- 8bR. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 2001, 86, 5534–5537;
- 8cJ. Becker, G. Grun, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, R. Blossey, Nat. Mater. 2003, 2, 59–63.
- 9
- 9aL. Rayleigh, Philos. Magazine Ser. 5 1892, 34, 145–154;
10.1080/14786449208620301 Google Scholar
- 9bJ. A. F. Plateau, Acad. Sci. Brux. Mem. 1843, 16, 3.
- 10
- 10aJ. A. Diez, A. G. Gonzalez, L. Kondic, Phys. Fluids 2009, 21, 082105;
- 10bK. Sekimoto, R. Oguma, K. Kawasaki, Ann. Phys. New York 1987, 176, 359–392;
- 10cF. Brochard-Wyart, C. Redon, Langmuir 1992, 8, 2324–2329.
- 11D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 2009, 81, 739–805.
- 12
- 12aM. Moseler, U. Landman, Science 2000, 289, 1165–1169;
- 12bJ. Eggers, Phys. Rev. Lett. 2002, 89, 084502.
- 13
- 13aD. Bartolo, C. Josserand, D. Bonn, J. Fluid Mech. 2005, 545, 329–338;
- 13bC. Andrieu, C. Sykes, F. Brochard, J. Adhes. 1996, 58, 15–24.
- 14J. Eggers, E. Villermaux, Rep. Prog. Phys. 2008, 71, 036601.
- 15S. Plimpton, J. Comput. Phys. 1995, 117, 1–19.
- 16
- 16aM. S. Daw, M. I. Baskes, Phys. Rev. B 1984, 29, 6443–6453;
- 16bM. S. Daw, M. I. Baskes, Phys. Rev. Lett. 1983, 50, 1285–1288;
- 16cM. S. Daw, S. M. Foiles, M. I. Baskes, Mater. Sci. Rep. 1993, 9, 251–310.
- 17S. J. Stuart, A. B. Tutein, J. A. Harrison, J. Chem. Phys. 2000, 112, 6472–6486.
- 18
- 18aM. Fuentes-Cabrera, B. H. Rhodes, J. D. Fowlkes, A. Lopez-Benzanilla, H. Terrones, M. L. Simpson, P. D. Rack, Phys. Rev. E 2011, 83, 041603;
- 18bY. V. Naidich, G. A. A. Kolesnichenko, Powder Metall. Met. Ceram. 1968, 7, 3.