The Even-Handed Approach: Strategies for the Deployment of Racemic Chiral Catalysts
Dr. Louise A. Evans
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)
Search for more papers by this authorDr. Neil S. Hodnett
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)
Search for more papers by this authorCorresponding Author
Prof. Dr. Guy C. Lloyd-Jones
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)Search for more papers by this authorDr. Louise A. Evans
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)
Search for more papers by this authorDr. Neil S. Hodnett
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)
Search for more papers by this authorCorresponding Author
Prof. Dr. Guy C. Lloyd-Jones
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)Search for more papers by this authorGraphical Abstract
Twin set: Our obsession for (enantio)selectivity in catalysis means we tend to analyze and graphically communicate our findings in the form of single-handed cycles. However, dual-cycle racemic catalysts are of distinct utility in polymerization, prediction of stereoselectivity, and mechanistic study.
Abstract
Asymmetric catalysis is predominantly associated with the use of enantiomerically pure chiral ligands and catalysts. Although racemic chiral catalysts have been employed quite extensively in polymerization, their utility in mainstream organic synthesis and catalyst development has arguably been rather overlooked. This Minireview collates various themes for the strategic application of racemic ligands and catalysts, ranging from the estimation of selectivity and determination of enantiomeric excess, through to control of regio- and stereochemical outcomes, and mechanistic studies. What emerges is a clear picture that, in isolation or in concert with enantiopure catalysts, the “even-handed” approach has much to offer.
References
- 1
- 1aK. Mikami, M. Terada, T. Korenaga, Y. Matsumoto, M. Ueki, R. Angelaud, Angew. Chem. 2000, 112, 3676;
10.1002/1521-3757(20001016)112:20<3676::AID-ANGE3676>3.0.CO;2-W Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3532;10.1002/1521-3773(20001016)39:20<3532::AID-ANIE3532>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 1bK. Mikami, M. Terada, T. Korenaga, Y. Matsumoto, S. Matsukawa, Acc. Chem. Res. 2000, 33, 391;
- 1cJ. W. Faller, A. R. Lavoie, J. Parr, Chem. Rev. 2003, 103, 3345;
- 1dK. Mikami, M. Yamanaka, Chem. Rev. 2003, 103, 3369.
- 2H. Takaya, K. Mashima, K. Koyano, M. Yagi, H. Kumobayashi, H. Taketomi, S. Akutagawa, R. Noyori, J. Org. Chem. 1986, 51, 629.
- 3
- 3aN. W. Alcock, J. M. Brown, P. J. Maddox, J. Chem. Soc. Chem. Commun. 1986, 1532;
- 3bJ. M. Brown, P. J. Maddox, Chirality 1991, 3, 345.
- 4J. W. Faller, M. Tokunaga, Tetrahedron Lett. 1993, 34, 7359.
- 5T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M. Terada, R. Noyori, J. Am. Chem. Soc. 1998, 120, 1086.
- 6K. Mikami, T. Korenaga, T. Ohkuma, R. Noyori, Angew. Chem. 2000, 112, 3854;
10.1002/1521-3757(20001016)112:20<3854::AID-ANGE3854>3.0.CO;2-# Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3707.10.1002/1521-3773(20001016)39:20<3707::AID-ANIE3707>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 7
- 7aG. Natta, P. Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, G. Moraglio, J. Am. Chem. Soc. 1955, 77, 1708;
- 7bG. Natta, P. Pino, G. Mazzanti, U. Giannini, E. Mantica, M. Peraldo, J. Polym. Sci. 1957, 26, 120.
- 8J. A. Ewen, J. Am. Chem. Soc. 1984, 106, 6355.
- 9F. R. W. P. Wild, L. Zsolnai, G. Huttner, H. H. Brintzinger, J. Organomet. Chem. 1982, 232, 233.
- 10
- 10aK. Kaminsky, K. Külper, H. H. Brintzinger, F. R. W. P. Wild, Angew. Chem. 1985, 97, 507; Angew. Chem. Int. Ed. Engl. 1985, 24, 507;
- 10bJ. A. Ewen, L. Haspeslagh, J. L. Atwood, H. Zhang, J. Am. Chem. Soc. 1987, 109, 6544.
- 11
- 11aL. Resconi, L. Cavallo, A. Fait, F. Piemontei, Chem. Rev. 2000, 100, 1253;
- 11bG. W. Coates, Chem. Rev. 2000, 100, 1223;
- 11cC. Janiak, Coord. Chem. Rev. 2006, 250, 66;
- 11dS. Prashar, A. Antiñolo, A. Otero, Coord. Chem. Rev. 2006, 250, 133;
- 11eB. Wang, Coord. Chem. Rev. 2006, 250, 242.
- 12S. Collins, W. J. Gauthier, D. A. Holden, B. A. Kuntz, N. J. Taylor, D. G. Ward, Organometallics 1991, 10, 2061.
- 13G. M. Diamond, R. F. Jordan, J. L. Petersen, Organometallics 1996, 15, 4030.
- 14I. Kim, J. Appl. Polym. Sci. 1998, 1, 875.
- 15E. Kirillov, N. Marquet, M. Bader, A. Razavi, V. Belia, F. Hampel, T. Roisnel, J. A. Gladysz, J.-F. Carpentier, Organometallics 2011, 30, 263.
- 16S. Bogaert, T. Chenal, A. Mortreux, G. Nowogrocki, C. W. Lehmann, J.-F. Carpentier, Organometallics 2001, 20, 199.
- 17D. H. McConville, J. R. Wolf, R. R. Schrock, J. Am. Chem. Soc. 1993, 115, 4413.
- 18N. Spassky, M. Wisniewski, C. Pluta, A. LeBorgne, Macromol. Chem. Phys. 1996, 197, 2627.
- 19T. M. Ovitt, G. W. Coates, J. Am. Chem. Soc. 1999, 121, 4072.
- 20C. R. Radano, G. L. Baker, M. R. Smith, J. Am. Chem. Soc. 2000, 122, 1552.
- 21T. M. Ovitt, G. W. Coates, J. Polym. Sci. Polym. Chem. 2000, 38, 4686.
- 22Z. Zhong, P. J. Dijkstra, J. Feijen, J. Am. Chem. Soc. 2003, 125, 11291.
- 23P. C. B. Widger, S. M. Ahmed, W. Hirahata, R. M. Thomas, E. B. Lobkovsky, G. W. Coates, Chem. Commun. 2010, 46, 2935.
- 24B. Dominguez, N. S. Hodnett, G. C. Lloyd-Jones, Angew. Chem. 2001, 113, 4419;
10.1002/1521-3757(20011119)113:22<4419::AID-ANGE4419>3.0.CO;2-G Google ScholarAngew. Chem. Int. Ed. 2001, 40, 4289.10.1002/1521-3773(20011119)40:22<4289::AID-ANIE4289>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 25C. Ebner, C. A. Müller, C. Markert, A. Pfaltz, J. Am. Chem. Soc. 2011, 133, 4710.
- 26
- 26aFor a review, see: C. A. Müller, C. Markert, A. M. Teichert, A. Pfaltz, Chem. Commun. 2009, 1607;
- 26bC. Markert, A. Pfaltz, Angew. Chem. 2004, 116, 2552;
10.1002/ange.200453844 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2498;
- 26cC. Markert, P. Rösel, A. Pfaltz, J. Am. Chem. Soc. 2008, 130, 3234;
- 26dC. A. Müller, A. Pfaltz, Angew. Chem. 2008, 120, 3411; Angew. Chem. Int. Ed. 2008, 47, 3363;
- 26eA. M. Teichert, A. Pfaltz, Angew. Chem. 2008, 120, 3408;
10.1002/ange.200705082 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 3360;
- 26fI. Fleischer, A. Pfaltz, Chem. Eur. J. 2010, 16, 95.
- 27N. S. Hodnett, PhD. thesis, University of Bristol, 2003.
- 28Reactions examined[27] included: Rh-catalyzed hydroboration, Pd-catalyzed amination, Cr-catalyzed alkene epoxidation, Mn-catalyzed allene epoxidation, Ru-catalyzed alcohol oxidation, Mn-catalyzed CH hydroxylation, alcohol acylation using chiral DMAP analogues, and phase-transfer catalysis (U-tube) using chiral amonium ions.
- 29D. G. Blackmond, N. S. Hodnett, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2006, 128, 7450.
- 30L. Evans, N. Fey, J. N. Harvey, D. Hose, G. C. Lloyd-Jones, P. Murray, A. G. Orpen, R. Osborn, G. J. J. Owen-Smith, M. Purdie, J. Am. Chem. Soc. 2008, 130, 14471.
- 31H. B. Kagan, J. C. Fiaud, Top. Stereochem. 1988, 18, 249.
- 32
- 32aN. S. Finney, P. J. Pospisil, S. Chang, M. Palucki, R. G. Konsler, K. B. Hansen, E. N. Jacobsen, Angew. Chem. 1997, 109, 1798;
10.1002/ange.19971091614 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 1720;
- 32bD. L. Hughes, G. B. Smith, G. C. Dezeny, C. H. Senanayake, R. D. Larsen, T. R. Verhoeven, P. J. Reider, J. Org. Chem. 1997, 62, 2222.
- 33
- 33aL. Kürti, M. M. Blewett, E. J. Corey, Org. Lett. 2009, 11, 4592;
- 33bE. M. McGarrigle, D. G. Gilheany, Chem. Rev. 2005, 105, 1563;
- 33cP. Fristrup, B. D. Dideriksen, D. Tanner, P.-O. Norrby, J. Am. Chem. Soc. 2005, 127, 13672;
- 33dM. Palucki, N. S. Finney, P. J. Pospisil, M. L. Güler, T. Ishida, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 948;
- 33eY. N. Ito, T. Katsuki, Bull. Chem. Soc. Jpn. 1999, 72, 603;
- 33fT. Strassner, K. N. Houk, Org. Lett. 1999, 1, 419.
- 34For Pd-AAA this could arise from nonideal kinetics and the facility for reversible ionization to racemize the substrate.
- 35A. M. Daly, D. G. Gilheany, Tetrahedron: Asymmetry 2003, 14, 127.
- 36F. Lagasse, M. Tsukamoto, C. J. Welch, H. B. Kagan, J. Am. Chem. Soc. 2003, 125, 7490.
- 37
- 37aS. Nieto, V. M. Lynch, E. V. Anslyn, H. Kim, J. Chin, J. Am. Chem. Soc. 2008, 130, 9232;
- 37bS. Nieto, V. M. Lynch, E. V. Anslyn, H. Kim, J. Chin, Org. Lett. 2008, 10, 5167;
- 37c L. Zhu, E. V. Anslyn, J. Am. Chem. Soc. 2004, 126, 3676.
- 38B. M. Trost, D. A. Thaisrivongs, J. Am. Chem. Soc. 2009, 131, 12056.
- 39G. C. Lloyd-Jones, S. C. Stephen, Chem. Eur. J. 1998, 4, 2539.
10.1002/(SICI)1521-3765(19981204)4:12<2539::AID-CHEM2539>3.0.CO;2-1 CAS Web of Science® Google Scholar
- 40C. P. Butts, E. Filali, G. C. Lloyd-Jones, P.-O. Norrby, D. A. Sale, Y. Schramm, J. Am. Chem. Soc. 2009, 131, 9945.
- 41B. M. Trost, R. C. Bunt, J. Am. Chem. Soc. 1998, 120, 70.
- 42B. M. Trost, M. A. Machacek, A. Aponick, Acc. Chem. Res. 2006, 39, 747.
- 43B. M. Trost, C. Jiang, J. Am. Chem. Soc. 2001, 123, 12907.
- 44B. M. Trost, A. Aponick, B. N. Stanzl, Chem. Eur. J. 2007, 13, 9547.
- 45B. M. Trost, R. C. Bunt, R. C. Lemoine, T. L. Calkins, J. Am. Chem. Soc. 2000, 122, 5968.
- 46K. Tomioka, Pure. Appl. Chem. 2006, 78, 2029.
- 47B. M. Trost, C. Heinemann, X. Ariza, S. Weigand, J. Am. Chem. Soc. 1999, 121, 8667.
- 48P. G. Cozzi, F. Benfatti, L. Zoli, Angew. Chem. 2009, 121, 1339;
10.1002/ange.200805423 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 1313.