Learning from “Coffee Rings”: Ordered Structures Enabled by Controlled Evaporative Self-Assembly
Wei Han
School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, NW, Atlanta, GA 30332-0245 (USA)
Search for more papers by this authorCorresponding Author
Prof. Zhiqun Lin
School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, NW, Atlanta, GA 30332-0245 (USA)
School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, NW, Atlanta, GA 30332-0245 (USA)Search for more papers by this authorWei Han
School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, NW, Atlanta, GA 30332-0245 (USA)
Search for more papers by this authorCorresponding Author
Prof. Zhiqun Lin
School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, NW, Atlanta, GA 30332-0245 (USA)
School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, NW, Atlanta, GA 30332-0245 (USA)Search for more papers by this authorGraphical Abstract
Drying out: The evaporation of solutions of nonvolatile solutes is one way to generate complex ordered structures. An array of facile and robust preparative strategies based on controlled evaporative self-assembly (CESA) of confined solutions have been exploited to rationally assemble various soft and hard materials into spatially ordered structures (see picture) with engineered properties and functionality over large surface areas.
Abstract
Research into the evaporation of solutions is not only aimed at a better understanding the physics of evaporation, but increasingly at capitalizing on the extremely simple method it offers to assemble diverse nonvolatile solutes into complex ordered structures on the submicron and longer length scales. This Review highlights recent advances in evaporative assembly of confined solutions, focusing especially on recently developed approaches that provide structures with unprecedented regularity composed of polymers, nanoparticles, and biomaterials, by controlled evaporation-driven, flow-aided self-assembly. A broad range of variables that can control the deposition are explored and the future directions of this rich field are presented.
References
- 1
- 1aR. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature 1997, 389, 827–829;
- 1bR. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Phys. Rev. E 2000, 62, 756–765;
- 1cE. Rabani, D. R. Reichman, P. L. Geissler, L. E. Brus, Nature 2003, 426, 271–274;
- 1dB. P. Khanal, E. R. Zubarev, Angew. Chem. 2007, 119, 2245–2248;
10.1002/ange.200604889 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 2195–2198.
- 2
- 2aE. Adachi, A. S. Dimitrov, K. Nagayama, Langmuir 1995, 11, 1057–1060;
- 2bL. Shmuylovich, A. Q. Shen, H. A. Stone, Langmuir 2002, 18, 3441–3445.
- 3B. J. Fischer, Langmuir 2002, 18, 60–67.
- 4Y. O. Popov, Phys. Rev. E 2005, 71, 036313.
- 5K. Ozawa, E. Nishitani, M. Doi, Jpn. J. Appl. Phys. 2005, 44, 4229–4234.
- 6
- 6aM. Nonomura, R. Kobayashi, Y. Nishiura, M. Shimomura, J. Phys. Soc. Jpn. 2003, 72, 2468–2471;
- 6bL. Frastia, A. J. Archer, U. Thiele, Phys. Rev. Lett. 2011, 106, 077801.
- 7
- 7aS. Q. Xu, E. Kumacheva, J. Am. Chem. Soc. 2002, 124, 1142–1143;
- 7bZ. Mitov, E. Kumacheva, Phys. Rev. Lett. 1998, 81, 3427–3430;
- 7cV. X. Nguyen, K. J. Stebe, Phys. Rev. Lett. 2002, 88, 164501;
- 7dA. V. Getling, O. Brausch, Phys. Rev. E 2003, 67, 046313;
- 7eI. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. Kessler, R. E. Goldstein, Proc. Natl. Acad. Sci. USA 2005, 102, 2277–2282;
- 7fH. Hu, R. G. Larson, J. Phys. Chem. B 2006, 110, 7090–7094;
- 7gH. Hu, R. G. Larson, Langmuir 2005, 21, 3963–3971.
- 8R. D. Deegan, Phys. Rev. E 2000, 61, 475–485.
- 9M. Maillard, L. Motte, M. P. Pileni, Adv. Mater. 2001, 13, 200–204.
- 10S. W. Hong, J. F. Xia, Z. Q. Lin, Adv. Mater. 2007, 19, 1413–1417.
- 11E. Pauliac-Vaujour, A. Stannard, C. P. Martin, M. O. Blunt, I. Notingher, P. J. Moriarty, I. Vancea, U. Thiele, Phys. Rev. Lett. 2008, 100, 176102.
- 12
- 12aM. Gleiche, L. F. Chi, H. Fuchs, Nature 2000, 403, 173–175;
- 12bX. Chen, A. L. Rogach, D. V. Talapin, H. Fuchs, L. F. Chi, J. Am. Chem. Soc. 2006, 128, 9592–9593.
- 13J. Huang, F. Kim, A. R. Tao, S. Connor, P. D. Yang, Nat. Mater. 2005, 4, 896–900.
- 14B. G. Prevo, O. D. Velev, Langmuir 2004, 20, 2099–2107.
- 15
- 15aH. Yabu, M. Shimomura, Adv. Funct. Mater. 2005, 15, 575–581;
- 15bB. H. Kim, D. O. Shin, S.-J. Jeong, C. M. Koo, S. C. Jeon, W. J. Hwang, S. Lee, M. G. Lee, S. O. Kim, Adv. Mater. 2008, 20, 2303–2307;
- 15cZ. Q. Lin, S. Granick, J. Am. Chem. Soc. 2005, 127, 2816–2817;
- 15dS. W. Hong, J. Xu, J. F. Xia, Z. Q. Lin, F. Qiu, Y. L. Yang, Chem. Mater. 2005, 17, 6223–6226;
- 15eM. Byun, N. B. Bowden, Z. Lin, Nano Lett. 2010, 10, 3111–3117;
- 15fJ. Xu, J. F. Xia, S. W. Hong, Z. Q. Lin, F. Qiu, Y. L. Yang, Phys. Rev. Lett. 2006, 96, 066104;
- 15gJ. Xu, J. F. Xia, Z. Q. Lin, Angew. Chem. 2007, 119, 1892–1895; Angew. Chem. Int. Ed. 2007, 46, 1860–1863;
- 15hS. W. Hong, M. Byun, Z. Q. Lin, Angew. Chem. 2009, 121, 520–524; Angew. Chem. Int. Ed. 2009, 48, 512–516;
- 15iS. W. Hong, J. Wang, Z. Q. Lin, Angew. Chem. 2009, 121, 8506–8510; Angew. Chem. Int. Ed. 2009, 48, 8356–8360;
- 15jM. Abkarian, J. Nunes, H. A. Stone, J. Am. Chem. Soc. 2004, 126, 5978–5979;
- 15kY. Lin, E. Balizan, L. A. Lee, Z. Niu, Q. Wang, Angew. Chem. 2010, 122, 880–884; Angew. Chem. Int. Ed. 2010, 49, 868–872.
- 16
- 16aD. J. Harris, H. Hu, J. C. Conrad, J. A. Lewis, Phys. Rev. Lett. 2007, 98, 148301;
- 16bD. J. Harris, J. A. Lewis, Langmuir 2008, 24, 3681–3685.
- 17
- 17aL. Jiang, H. Dong, W. Hu, Soft Matter 2011, 7, 1615–1630;
- 17bU. H. F. Bunz, Adv. Mater. 2006, 18, 973–989.
- 18
- 18aJ. Kleinert, S. Kim, O. D. Velev, Langmuir 2010, 26, 10380–10385;
- 18bH. S. Kim, C. H. Lee, P. K. Sudeep, T. Emrick, A. J. Crosby, Adv. Mater. 2010, 22, 4600–4604.
- 19Y. Lin, Z. Su, E. Balizan, Z. Niu, Q. Wang, Langmuir 2010, 26, 12803–12809.
- 20D. J. Harris, J. C. Conrad, J. A. Lewis, Philos. Trans. R. Soc. London Ser. A 2009, 367, 5157–5165.
- 21
- 21aS. W. Hong, S. Giri, V. S. Y. Lin, Z. Q. Lin, Chem. Mater. 2006, 18, 5164–5166;
- 21bS. W. Hong, J. Xu, Z. Q. Lin, Nano Lett. 2006, 6, 2949–2954;
- 21cS. W. Hong, J. F. Xia, M. Byun, Q. Z. Zou, Z. Q. Lin, Macromolecules 2007, 40, 2831–2836;
- 21dS. W. Hong, W. Jeong, H. Ko, M. R. Kessler, V. V. Tsukruk, Z. Q. Lin, Adv. Funct. Mater. 2008, 18, 2114–2122;
- 21eM. Byun, S. W. Hong, F. Qiu, Q. Z. Zou, Z. Q. Lin, Macromolecules 2008, 41, 9312–9317;
- 21fM. Byun, S. W. Hong, L. Zhu, Z. Lin, Langmuir 2008, 24, 3525–3531;
- 21gM. Byun, R. L. Laskowski, M. He, F. Qiu, M. Jeffries-El, Z. Q. Lin, Soft Matter 2009, 5, 1583–1586;
- 21hM. Byun, J. Wang, Z. Q. Lin, J. Phys. Condens. Matter 2009, 21, 264014;
- 21iM. Byun, W. Han, F. Qiu, N. B. Bowden, Z. Lin, Small 2010, 6, 2250–2255;
- 21jW. Han, M. Byun, Z. Lin, J. Mater. Chem. 2011, 21, 16968–16972.
- 22
- 22aV. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 1994, 370, 354–357;
- 22bA. P. Alivisatos, Abstr. Pap. Am. Chem. Soc. 2004, 227, 1240;
- 22cI. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435–446.
- 23
- 23aJ. Xu, J. Wang, M. Mitchell, P. Mukherjee, M. Jeffries-EL, J. W. Petrich, Z. Q. Lin, J. Am. Chem. Soc. 2007, 129, 12828–12833;
- 23bJ. Xu, J. F. Xia, J. Wang, J. Shinar, Z. Q. Lin, Appl. Phys. Lett. 2006, 89, 133110;
- 23cD. Zimnitsky, C. Jiang, J. Xu, Z. Q. Lin, V. V. Tsukruk, Langmuir 2007, 23, 4509–4515;
- 23dD. Zimnitsky, C. Jiang, J. Xu, Z. Q. Lin, L. Zhang, V. V. Tsukruk, Langmuir 2007, 23, 10176–10183;
- 23eJ. Wang, J. Xu, M. D. Goodman, Y. Chen, M. Cai, J. Shinar, Z. Q. Lin, J. Mater. Chem. 2008, 18, 3270–3274;
- 23fZ. Q. Lin, Chem. Eur. J. 2008, 14, 6294–6301;
- 23gM. D. Goodman, J. Xu, J. Wang, Z. Q. Lin, Chem. Mater. 2009, 21, 934–938.
- 24B. H. Kim, H. M. Lee, J. H. Lee, S. W. Son, S. J. Jeong, S. Lee, D. I. Lee, S. U. Kwak, H. Jeong, H. Shin, J. B. Yoon, O. D. Lavrentovich, S. O. Kim, Adv. Funct. Mater. 2009, 19, 2584–2591.
- 25
- 25aY.-H. Lin, C. Y. Jiang, J. Xu, Z. Q. Lin, V. V. Tsukruk, Adv. Mater. 2007, 19, 3827–3832;
- 25bL. Zhao, X. Pang, R. Adhikary, J. Petrich, M. Jeffries-EL, Z. Lin, Adv. Mater. 2011, 23, 2844–2849;
- 25cL. Zhao, X. Pang, R. Adhikary, J. Petrich, Z. Lin, Angew. Chem. 2011, 123, 4044–4048; Angew. Chem. Int. Ed. 2011, 50, 3958–3962.
- 26
- 26aM. He, L. Zhao, J. Wang, W. Han, Y. L. Yang, F. Qiu, Z. Q. Lin, ACS Nano 2010, 4, 3241–3247;
- 26bM. He, W. Han, J. Ge, Y. L. Yang, F. Qiu, Z. Lin, Energy Environ. Sci. 2011, 4, 2894-2902;
- 26cM. He, W. Han, J. Ge, W. Yu, Y. L. Yang, F. Qiu, Z. Lin, Nanoscale 2011, 3, 3159–3163.
- 27T. Y. Kim, S. W. Kwon, S. J. Park, D. H. Yoon, K. S. Suh, W. S. Yang, Adv. Mater. 2011, 23, 2734–2738.
- 28
- 28aT. Thurn-Albrecht, J. Schotter, C. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell, Science 2000, 290, 2126–2129;
- 28bJ. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 18, 2505–2521;
- 28cS. Ouk Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Nature 2003, 424, 411–414;
- 28dC. J. Hawker, T. P. Russell, MRS Bull. 2005, 30, 952–966.
- 29W. Han, M. Byun, L. Zhao, J. Rzayev, Z. Lin, J. Mater. Chem. 2011, 21, 14248–14253.
- 30Z. Lin, J. Polym. Sci. Part B 2010, 48, 2552–2557.
- 31Z. Wang, R. Bao, X. Zhang, X. Ou, C.-S. Lee, J. C. Chang, X. Zhang, Angew. Chem. 2011, 123, 2863–2867; Angew. Chem. Int. Ed. 2011, 50, 2811–2815.
- 32
- 32aJ. Chen, W. Liao, X. Chen, T. Yang, S. E. Wark, D. Son, J. D. Batteas, P. S. Cremer, ACS Nano 2009, 3, 173–180;
- 32bM. A. Ray, H. Kim, L. Jia, Langmuir 2005, 21, 4786–4789.
- 33S. L. Tripp, S. V. Pusztay, A. E. Ribbe, A. Wei, J. Am. Chem. Soc. 2002, 124, 7914–7915.
- 34X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra, N. Hornigold, M. van Slegtenhorst, J. Wolfe, S. Povey, J. S. Beckmann, A. Bensimon, Science 1997, 277, 1518–1523.
- 35S. Choi, S. Stassi, A. P. Pisano, T. I. Zohd, Langmuir 2010, 24.
- 36Y. Lin, A. Boker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long, Q. Wang, A. Balazs, T. P. Russell, Nature 2005, 434, 55–59.
- 37A. Dong, J. Chen, S. J. Oh, W. K. Koh, F. Xiu, X. Ye, D. K. Ko, K. L. Wang, C. R. Kagan, C. B. Murray, Nano Lett. 2011, 11, 841–846.
- 38M. S. Park, A. Aiyar, J. O. Park, E. Reichmanis, M. Srinivasarao, J. Am. Chem. Soc. 2011, 133, 7244–7247.
- 39P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, J. Phys. Chem. A 2010, 114, 304–308.