Jahn–Teller Effects in Molecular Cations Studied by Photoelectron Spectroscopy and Group Theory
Correction(s) for this article
-
Corrigendum: Jahn–Teller Effects in Molecular Cations Studied by Photoelectron Spectroscopy and Group Theory
- Volume 60Issue 15Angewandte Chemie International Edition
- pages: 8009-8009
- First Published online: March 30, 2021
Hans Jakob Wörner Dr.
Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich (Switzerland)
Search for more papers by this authorFrédéric Merkt Prof. Dr.
Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich (Switzerland)
Search for more papers by this authorHans Jakob Wörner Dr.
Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich (Switzerland)
Search for more papers by this authorFrédéric Merkt Prof. Dr.
Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich (Switzerland)
Search for more papers by this authorGraphical Abstract
More than distortion: The Jahn–Teller effect in molecules is more complex than a simple geometric distortion. It significantly alters the electronic and geometric structure, and can result in unexpected isomerism and chirality, for example in deuterated isotopologues of CH4+ (see picture). Rotationally resolved photoelectron spectroscopy and group theory provide precise information about the dynamic structure of Jahn–Teller distorted molecules.
Abstract
The traditional “ball-and-stick” concept of molecular structure fails when the motion of the electrons is coupled to that of the nuclei. Such a situation arises in the Jahn–Teller (JT) effect which is very common in open-shell molecular systems, such as radicals or ions. The JT effect is well known to chemists as a mechanism that causes the distortion of an otherwise symmetric system. Its implications on the dynamics of molecules still represent unsolved problems in many cases. Herein we review recent progress in understanding the dynamic structure of molecular cations that have a high permutational symmetry by using rotationally resolved photoelectron spectroscopy and group theory. Specifically, we show how the pseudo-Jahn–Teller effect in the cyclopentadienyl cation causes electronic localization and nuclear delocalization. The fundamental physical mechanisms underlying the vaguely defined concept of “antiaromaticity” are thereby elucidated. Our investigation of the methane cation represents the first experimental characterization of the JT effect in a threefold degenerate electronic state. A special kind of isomerism resulting from the JT effect has been discovered and is predicted to exist in all JT systems in which the minima on the potential-energy surface are separated by substantial barriers.
References
- 1I. B. Bersuker, The Jahn–Teller Effect, Cambridge University Press, Cambridge, 2006.
10.1017/CBO9780511524769 Google Scholar
- 2 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy (Eds.: ), World Scientific, Singapore, 2004 (Adv. Ser. Phys. Chem., Vol. 15).
- 3H. A. Jahn, E. Teller, Proc. R. Soc. London Ser. A 1937, 161, 220.
- 4H. A. Jahn, Proc. R. Soc. London Ser. A 1938, 164, 117.
- 5H. C. Longuet-Higgins, U. Öpik, M. H. L. Pryce, R. A. Sack, Proc. R. Soc. London Ser. A 1958, 244, 1.
- 6H. C. Longuet-Higgins, Advances in Spectroscopy, Vol. 2, Interscience, New York, 1961.
- 7I. B. Bersuker, Sov. Phys. JETP 1963, 16, 933.
- 8U. Öpik, M. H. L. Pryce, Proc. R. Soc. London Ser. A 1957, 238, 425.
- 9H. von Busch, V. Dev, H.-A. Eckel, S. Kasahara, J. Wang, W. Demtröder, P. Sebald, W. Meyer, Phys. Rev. Lett. 1998, 81, 4584; Erratum: H. von Busch, V. Dev, H.-A. Eckel, S. Kasahara, J. Wang, W. Demtröder, P. Sebald, W. Meyer, Phys. Rev. Lett. 1999, 82, 3560.
- 10R. Meiswinkel, H. Köppel, Chem. Phys. 1990, 144, 117.
- 11W. E. Ernst, S. Rakowsky, Phys. Rev. Lett. 1995, 74, 58.
- 12R. Lindner, K. Müller-Dethlefs, E. Wedum, K. Haber, E. R. Grant, Science 1996, 271, 1698.
- 13M. Ford, R. Lindner, K. Müller-Dethlefs, Mol. Phys. 2003, 101, 705.
- 14H. Köppel, L. S. Cederbaum, W. Domcke, S. S. Shaik, Angew. Chem. 1983, 95, 221;
10.1002/ange.19830950306 Google ScholarAngew. Chem. Int. Ed. Engl. 1983, 22, 210.
- 15H. Köppel, W. Domcke, L. S. Cederbaum, Adv. Chem. Phys. 1984, 57, 59.
- 16J. W. Zwanziger, E. R. Grant, J. Chem. Phys. 1987, 87, 2954.
- 17T. A. Barckholtz, T. A. Miller, Int. Rev. Phys. Chem. 1998, 17, 435.
- 18B. E. Applegate, T. A. Barckholtz, T. A. Miller, Chem. Soc. Rev. 2003, 32, 38.
- 19C. C. Chancey, M. C. M. O’Brien, The Jahn–Teller Effect in C60 and Other Icosahedral Complexes, Princeton University Press, Princeton, 1997.
- 20K. Müller-Dethlefs, E. W. Schlag, Annu. Rev. Phys. Chem. 1991, 42, 109.
- 21K. Müller-Dethlefs, E. W. Schlag, Angew. Chem. 1998, 110, 1414;
10.1002/(SICI)1521-3757(19980518)110:10<1414::AID-ANGE1414>3.0.CO;2-2 Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1346.10.1002/(SICI)1521-3773(19980605)37:10<1346::AID-ANIE1346>3.0.CO;2-H CAS Web of Science® Google Scholar
- 22P. R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed., NRC Research Press, Ottawa, 1998.
- 23H. Köppel, L. S. Cederbaum, W. Domcke, Chem. Phys. Lett. 1984, 110, 469.
- 24I. B. Bersuker, V. Z. Polinger, Sov. Phys. JETP 1974, 39, 1023.
- 25A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts and Applications in Molecular and Condensed Matter Physic, Springer, Heidelberg, 2003.
10.1007/978-3-662-10333-3 Google Scholar
- 26J. K. Cullum, R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Birkhauser, Boston, 1985.
- 27M. J. Paterson, M. J. Bearpark, M. A. Robb, L. Blancafort, G. A. Worth, Phys. Chem. Chem. Phys. 2005, 7, 2100.
- 28G. Herzberg, H. C. Longuet-Higgins, Discuss. Faraday Soc. 1963, 35, 77.
- 29H. J. Wörner, R. van der Veen, F. Merkt, Phys. Rev. Lett. 2006, 97, 173003.
- 30W. T. Borden, Diradicals, Wiley, New York, 1982.
- 31H. Köppel, L. S. Cederbaum, W. Domcke, J. Chem. Phys. 1988, 89, 2023.
- 32J. K. G. Watson, Mol. Phys. 1999, 96, 1721.
- 33W. T. Borden, E. R. Davidson, J. Am. Chem. Soc. 1979, 101, 3771.
- 34H. J. Wörner, F. Merkt, J. Chem. Phys. 2007, 127, 034303.
- 35M. N. Paddon-Row, D. J. Fox, J. A. Pople, K. N. Houk, D. W. Pratt, J. Am. Chem. Soc. 1985, 107, 7696.
- 36R. F. Frey, E. R. Davidson, J. Chem. Phys. 1988, 88, 1775.
- 37R. Signorell, F. Merkt, Faraday Discuss. 2000, 115, 205.
- 38M. Quack, Angew. Chem. 1989, 101, 588; Angew. Chem. Int. Ed. Engl. 1989, 28, 571.
- 39M. Quack, J. Stohner, M. Willeke, Annu. Rev. Phys. Chem. 2008, 59, 741.
- 40M. S. Reeves, E. R. Davidson, J. Chem. Phys. 1991, 95, 6551.
- 41H. J. Wörner, X. Qian, F. Merkt, J. Chem. Phys. 2007, 126, 144305.
- 42G. Herzberg, Molecular Spectra and Molecular Structure, Vol. II, Infrared and Raman Spectra of Polyatomic Molecules, Krieger, Malabar, 1991.
- 43F. Merkt, Annu. Rev. Phys. Chem. 1997, 48, 675.
- 44E. W. Schlag, ZEKE Spectroscopy, Cambridge University Press, Cambridge, 1998.
- 45U. Hollenstein, R. Seiler, H. Schmutz, M. Andrist, F. Merkt, J. Chem. Phys. 2001, 115, 5461.
- 46D. E. Cooper, C. M. Klimack, J. E. Wessels, Phys. Rev. Lett. 1981, 46, 324.
- 47B. Bobin, J. Phys. 1972, 33, 345.
- 48S. Willitsch, J. M. Dyke, F. Merkt, Helv. Chim. Acta 2003, 86, 1152.
- 49H. J. Wörner, F. Merkt, Angew. Chem. 2006, 118, 299;
10.1002/ange.200503032 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 293.
- 50M. Saunders, R. Berger, A. Jaffe, J. M. McBride, J. O’Neill, R. Breslow, J. M. Hoffmann, C. Perchonock, E. Wassermann, R. S. Hutton, V. J. Kuck, J. Am. Chem. Soc. 1973, 95, 3017.
- 51T. Bally, S. Masamune, Tetrahedron 1980, 36, 343.
- 52G. Maier, Angew. Chem. 1988, 100, 317; Angew. Chem. Int. Ed. Engl. 1988, 27, 309.
- 53R. Signorell, F. Merkt, J. Chem. Phys. 1999, 110, 2309.
- 54M. Quack, Mol. Phys. 1977, 34, 477.
- 55M. Hippler, M. Quack, Chem. Phys. Lett. 1999, 314, 273.
- 56S. Willitsch, L. L. Imbach, F. Merkt, J. Chem. Phys. 2002, 117, 1939.
- 57A. Carrington, H. Longuet-Higgins, R. Moss, P. Todd, Mol. Phys. 1965, 9, 187.
- 58R. G. Lawler, J. R. Bolton, G. K. Fraenkel, T. H. Brown, J. Am. Chem. Soc. 1964, 86, 520.
- 59B. Scharf, R. Vitenberg, B. Katz, Y. B. Band, J. Chem. Phys. 1982, 77, 2226.
- 60L. Yu, D. W. Cullin, J. M. Williamson, T. A. Miller, J. Chem. Phys. 1993, 98, 2682.
- 61H. J. Wörner, F. Merkt, J. Chem. Phys. 2007, 126, 154304.
- 62R. Signorell, M. Sommavilla, F. Merkt, Chem. Phys. Lett. 1999, 312, 139.
- 63M. Quack, Nova Acta Leopold. 1999, 81, 1.
- 64R. Berger, G. Laubender, M. Quack, A. Sieben, J. Stohner, M. Willeke, Angew. Chem. 2005, 117, 3689; Angew. Chem. Int. Ed. 2005, 44, 3623.
- 65L. Wang, J. E. Pollard, Y. T. Lee, D. A. Shirley, J. Chem. Phys. 1987, 86, 3216.
- 66S. Willitsch, U. Hollenstein, F. Merkt, J. Chem. Phys. 2004, 120, 1761.
- 67A. M. Schulenburg, Diss. ETH Nr. 18024, Dissertation, Eidgenössische Technische Hochschule ETH Zürich, 2008.
- 68B. Fehrensen, D. Luckhaus, M. Quack, Chem. Phys. Lett. 1999, 300, 312.
- 69M. Gottselig, D. Luckhaus, M. Quack, J. Stohner, M. Willeke, Helv. Chim. Acta 2001, 84, 1846.
- 70R. Berger, M. Gottselig, M. Quack, M. Willeke, Angew. Chem. 2001, 113, 4342;
Angew. Chem. Int. Ed. 2001, 40, 4195.
10.1002/1521-3773(20011119)40:22<4195::AID-ANIE4195>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 71M. Gottselig, M. Quack, J. Chem. Phys. 2005, 123, 084305.
- 72M. J. M. Pepper, I. Shavitt, P. v. R. Schleyer, M. N. Glukhovtsev, R. Janoschek, M. Quack, J. Comput. Chem. 1995, 16, 207.
- 73M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CT, 2004.
- 74A. Garg, Am. J. Phys. 2000, 68, 430.
- 75J. T. Hougen in Methane Symmetry Operation, MTP International Reviews of Science, Physical Chemistry, Vol. 3 (Eds.: ), Butterworth, London, 1976.
- 76A. Olah, G. Rasul, Acc. Chem. Res. 1997, 30, 245.
- 77E. Herbst, J. Phys. Chem. A 2005, 109, 4017.
- 78E. T. White, J. Tang, T. Oka, Science 1999, 284, 135.
- 79O. Asvany, P. Kumar, B. Redlich, I. Hegemann, S. Schlemmer, D. Marx, Science 2005, 309, 1219.
- 80X. Huang, A. B. McCoy, J. M. Bowman, L. M. Johnson, C. Savage, F. Dong, D. J. Nesbitt, Science 2006, 311, 60.
- 81X.-G. Wang, T. Carrington, Jr., J. Chem. Phys. 2008, 129, 234102.
- 82A. Komornicki, D. A. Dixon, J. Chem. Phys. 1987, 86, 5625.
- 83W. Klopper, W. Kutzelnigg, J. Phys. Chem. 1990, 94, 5625.
- 84P. R. Schreiner, S.-J. Kim, H. F. Schafer III, P. v. R. Schleyer, J. Chem. Phys. 1993, 99, 3716.
- 85P. R. Schreiner, Angew. Chem. 2000, 112, 3375;
Angew. Chem. Int. Ed. 2000, 39, 3239.
10.1002/1521-3773(20000915)39:18<3239::AID-ANIE3239>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 86A. Brown, A. B. McCoy, B. J. Braams, Z. Jin, J. M. Bowman, J. Chem. Phys. 2004, 121, 4105.
- 87Z. Jin, B. J. Braams, J. M. Bowman, J. Phys. Chem. A 2006, 110, 1569.
- 88P. R. Bunker, B. Ostojić, S. Yurchenko, J. Mol. Struct. 2004, 695–696, 253.
- 89A. B. McCoy, B. J. Braams, A. Brown, X. Huang, Z. Jin, J. M. Bowman, J. Phys. Chem. A 2004, 108, 4991.
- 90L. M. Johnson, A. B. McCoy, J. Phys. Chem. A 2006, 110, 8213.
- 91X. Huang, L. M. Johnson, J. M. Bowman, A. B. McCoy, J. Am. Chem. Soc. 2006, 128, 3478.